Aplicatii la logaritmi

Prezentam anumite exercitii cu logaritmi, exercitii care apar la examenul de Bacalaureat.

  1. Demonstrati ca \log_{2}3\cdot\log_{3}5\cdot\log_{5}8=3

Observam ca in cazul exercitiului de mai sus nu avem aceeasi baza, asadar incercam sa aducem la aceeasi baza.

Stim ca \log_{a}A=\frac{\log_{b}A}{\log_{b}a}
\log_{3}[5]=\frac{\log_{2}5}{\log_{2}3}

Dar si \log_{5}[8]=\frac{\log_{2}8}{\log_{2}5}

Rescriind exercitiul cu ce am gasit obtinem:
\log_{2}3\cdot\frac{\log_{2}5}{\log_{2}3}\cdot\frac{\log_{2}8}{\log_{2}5}

Observam ca simplificam pe diagonala si obtinem 1\cdot\frac{1}{1}\cdot\frac{\log_{2}8}{1}=\log_{2}8=3

In cazul exercitiului de mai sus, totul a constat in a aduce logaritmii la aceeasi baza.

2. Demonstrati ca \log_{4}9=\log_{8}27

Solutie:
Luam fiecare logaritm in parte si incercam sa-l rezolvam, astfel avem: \log_{4}9=\log_{4}3^{2}=2\cdot\log_{4}3

Am folosit regula \log_{a}A^{n}=n\cdot\log_{a}A, unde A>0 , a>0, a\neq 1

Dar putem folosi si regula \log_{a^{n}}A=\frac{1}{n}\log_{a}A.
Asadar obtinem 2\cdot\log_{4}3=2\cdot\log_{2^{2}}3=2\cdot\frac{1}{2}\log_{2}3=\log_{2}3.

Iar pentru \log_{8}27=\log_{2^{3}}3^{3}=3\cdot\frac{1}{3}\cdot\log_{2}3=\log_{2}3
Astfel obtinem ca \log_{2}3=\log_{2}3\Rightarrow \log_{4}9=\log_{8}27.
3. Sa se demonstreze ca numarul A=\left(\sqrt{11}\right)^{\log_{12}144}+\log_{2}32-\left(\frac{1}{3}\right)^{-2} este natural.

Solutie:
Calculam mai intai logaritmii, astfel obtinem:
A=\left(\sqrt{11}\right)^{2}+5-\left(3^{-1}\right)^{-2}

Observam ca pentru \frac{1}{3}=3^{-1}, am folosit regula \frac{1}{a}=a^{-1}

Asadar A=2+5-3^{(-1)\cdot(-2)}
Adica A=2+3+3^{2}, adica A=5+9\Rightarrow A=14\in N.
Pentru cei care nu stiu sa calculeze logartimul dintr-un numar click aici.

Adica pentru \log_{2}32, logaritmul numarului 2 este puterea la care trebuie ridicat 2, pentru a obtine 32, astfel avem ca 2^{5}=32, asadar rezultatul este 5.

4. Demonstrati ca A=\log_{2}(5+\sqrt{7})+\log_{2}(5-\sqrt{7})-2\log_{2}3 este intreg.

Solutie:

Folosind proprietatile logaritmilor obtinem:

A=\log_{2}[(5+\sqrt{7})\cdot(5-\sqrt{7})]-2\log_{2}3

Folosind formula de calcul prescurtat (a-b)\cdot(a+b)=a^{2}-b^{2}, obtinem:

A=\log_{2}[5^{2}-(\sqrt{7})^{2}]-2\log_{2}3

Efectuand calculele obtinem A=\log_{2}(25-7)-2\log_{2}3

Adica A=\log_{2}18-2\log_{2}3\Rightarrow A=\log_{2}3^{2}-2\log_{2}3\Rightarrow A=2\log_{2}3-2\log_{2}3\Rightarrow A=0\in Z.

5. Sa se arate ca log_{2}432=4+3a, unde a=log_{2}3

Descompunad pe 432 obtinem 432=2^{4}\cdot 3^{3}

Asadar avem ca \log_{2}432=\log_{2}(2^{4}\cdot 3^{3}), folosind proprietatile radicalilor obtinem:

\log_{2}(2^{4}\cdot 3^{3})=\log_{2}2^{4}+\log_{2}3^{3}=4\cdot\log_{2}2+3\cdot\log_{2}3=4\cdot 1+3\cdot a=4+3a,unde stim ca a=\log_{2}3.

6.  Demonstrati ca \log_{2\sqrt{2}}3\sqrt{3}=\log_{2}3

Solutie

Luand membrul stang obtinem ca:

\log_{2\sqrt{2}}3\sqrt{3}

Si mai intai introducand factorii sub radicali obtinem: 2\sqrt{2}=\sqrt{2^{2}\cdot 2}=\sqrt{4\cdot 2}=\sqrt{8}=8^{\frac{1}{2}}, dar si 3\sqrt{3}=\sqrt{27}=27^{\frac{1}{2}}. asadar obtinem:

\log_{8^{\frac{1}{2}}}27^{\frac{1}{2}}, folosind proprietatile radicalilor obtinem: \frac{1}{2}\cdot\log_{8^{\frac{1}{2}}}27=\frac{1}{2}\cdot\frac{1}{\frac{1}{2}}\log_{8}27=

\frac{1}{2}\cdot \frac{2}{1}\log_{2^{3}}3^{3}=\frac{2}{2}\log_{2^{3}}3^{3}=

1\cdot 3\log_{2^{3}}3=

\frac{3}{3}\log_{2}3=\log_{2}3, adica ceea ce trebuia sa demonstram.

 

 

 

 

 

 

Grupuri de matrice Grupuri de permutari Grupuri Zn

Dupa ce am introdus notiunea de Grup, introducem alte notiuni noi si anume Grup de matrice, Grup de permutari si Grup Z_{n}. Asadar incepem cu:

Grup de matrice.

Fie n\in N^{*} si M_{n}(C) multimea matricelor patratice de ordin n cu elemente numere complexe.

Stim din clasa a XI a ca multimea  M_{n}(C) impreuna cu  adunarea matricelor este asociativa, comutativa si admite element neutru matricea O_{n}, dar si element simetrizabil, asadar stim ca (M_{n}(C), +) este un grup comutativ.

Despre inmultirea matricelor stim ca este un monoid necomutativ, adica este asociativa si admite elementul neutru I_{n}.

Grupul liniar general de grad n

Fie A\in M_{n}(C). Stim ca matricea A este inversabila in monoidul (M_{n}(C), \cdot) daca si numai daca det A\neq 0. Iar multimea unitatilor monoidului se noteaza Gl_{n}(C)=\left\{    A\in M_{n}(C)| det (A)\in C^{*}\right\}

Asadar  perechea (GL_{n}(C), \cdot) este un grup necomutativ, numit  grup liniar general de grad n peste C.

Definitie:

Matricea A\in M_{n}(C) se numeste matrice ortogonala daca A^{t}\cdot A=I_{n}, iar multimea matricelor ortogonale se noteaza O_{n}(C).

Grupul permutarilor

Inca din clasa a X a la capitolul „Combinatorica” s-a definit notiunea de permutare. Stim ca permutarea unei multimi M=\left\{1, 2, 3, ...., n\right\} este multimea ordonata cu cate n elemente ce se poate alcatui cu elementele multimii M. Numarul elementelor multimii este n! si se citeste n factorial.

Exemplu:

Permutarile multimii {1, 2, 3} sunt: (1, 2, 3), (1, 3, 2), (2, 1, 3),(2, 3, 1), (3, 1, 2), (3, 2, 1), asadar fiecarei permutari putem face sa ii corespunda o functie bijectiva, adica functia care asociaza numarului k\in \left\{1, 2, 3\right\}, elementul aflat in permuatare pe locul k.

Asadar celor sase permutari le corespund cele 6 functii bijective definite pe {1,2 ,3} cu valori in {1, 2, 3} si avem corespondentele:

(1, 2, 3)\rightarrow {1, 2, 3}; (1, 2, 3)\rightarrow (1, 3, 2); (1, 2, 3)\rightarrow (2, 1, 3); (1, 2, 3)\rightarrow (2, 3, 1); (1, 2, 3)\rightarrow (3, 1, 2); (1, 2, 3)\rightarrow (3, 2, 1)

Definitie!

Fie n\in N^{*},  se numeste permutare a multimii M=\left\{1, 2, 3,...., n\right\} orice functie bijectiva definita pe M cu valori in M.

S_{n}=\left\{1, 2, 3,...,n\right\}, multimea permutarilor de gradul n.

Stim ca S_{n}=n! elemente.

Observatie!!!  Permutarile de obicei se noteaza cu ajutorul alfabetului grecesc.

Daca compunem doua functii bijective obtinem tot o functie bijectiva, asadar compunerea permutarilor este lege de compozitie.

Exemplu:

S_{2}=2!=2, adica avem doua permutari

(1, 2)\rightarrow (1,2), dar si (1, 2)\rightarrow (2, 1).

Compunerea permutarilor

Oricare doua permutari din multimea S_{n} se pot compune dupa procedeul de compunere a functiilor.

Astfel stim ca daca compunem doua functii bijective obtinem tot o functie bijectiva, asadar compunerea permutarilor este lege de compozitie.

Pentru simplitate se obisnuieste ca la compunerea permutarilor sa nu se mai foloseasca semnul, adica \alpha\circ \beta=\alpha\beta

Exemplu:

\alpha=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}

Si \beta=\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}

Atunci \alpha\beta=\begin{pmatrix} 1 & 2 & 3 \\ \alpha(\beta(1)) & \alpha(\beta(2))  &\alpha(\beta(3))  \end{pmatrix}

Asadar obtinem \alpha\beta=\begin{pmatrix} 1 & 2 & 3 \\ \alpha(3) & \alpha(2)  &\alpha(1)  \end{pmatrix}

Adica \alpha\beta=\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1  & 2  \end{pmatrix}

Stim din clasa a IX a, compunerea functiilor este asociativa, dar nu este comutativa, si astfel avem: \beta\alpha=\begin{pmatrix} 1 & 2 & 3 \\ \beta(\alpha(1)) & \beta(\alpha(2))  &\beta(\alpha(3))  \end{pmatrix}

Asadar obtinem \beta\alpha=\begin{pmatrix} 1 & 2 & 3 \\ \beta(2) & \beta(1)  &\beta(3)  \end{pmatrix}

Adica \beta\alpha=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3  & 1  \end{pmatrix}

Asadar compunerea permutarilor nu este comutativa.

In multimea permutarilor de grad n, un rol important il joaca e=\begin{pmatrix} 1 & 2 & 3 & .....& n \\ 1 & 2  & 2 & .....& n \end{pmatrix}, numit permutarea identica.

Teorema. Fie  n\in N^{*} si S_{n} multimea permutarilor de grad n, atunci (S_{n}, \circ) este un grup numit grupul permutarilor de grad n. Daca n\geq 3, atunci (S_{n}, \circ) este un grup necomutativ.

Grupul Z_{n}

Fie n\in N^{*}, stim ca Z_{n}=\left\{\widehat{0},\widehat{1},\widehat{2}, ....,\widehat{n-1}\right\} numita multimea claselor de resturi modulo n. Pe multimea Z_{n} s-au definit operatiile de adunare si inmultire a claselor de resturi modulo n.

Astfel (Z_{n}, +) este grup abelian numit grupul aditiv al claselor de resturi modulo n, iar (Z_{n},\cdot) este monoid comutativ.

Si U(Z_{n})=\left\{\widehat{k}|(n, k)=1\right\}– numita multimea elementelor inversabile din Z_{n}, adica numerele n si k sunt prime intre ele (cel mai mare divizor comun este 1).

Astfel obtinem ca (U(Z_{n}), \cdot ) este grup comutativ, numit grupul multiplicativ al claselor de resturi modulo n.

Rezolvari subiecte Evaluarea Nationala 2015

subiecte evaluarea nationala 2015Demonstratie:
a) Stim ca aria unui dreptunghi este A_{dreptunghi}=L\cdot l=AB\cdot AD=150\cdot 100=15000\;\; m^{2}
Dar transformati in hectare obtinem
15 000:10000=1,5 ha
b)Triunghiul MNB isoscel

Stim ca M este mijlocul lui AD astfel avem ca AM=MD=\frac{100}{2}=50 m
Dar mai stim si ca DN=2\cdot NC
Dar stim ca DC=DN+NC\Rightarrow 150 m=2NC+NC\Rightarrow 3NC=150 m\Rightarrow NC=150:3\Rightarrow NC=50\;\; m
Si DN este egal cu DN=150-50=100
Triunghiul DMN este dretunghic in D si cu Teorema lui Pitagoram obtinem
MN^{2}=DM^{2}+DN^{2}\Rightarrow MN^{2}=100^{2}+50^{2}\Rightarrow MN^{2}=10000+2500\Rightarrow MN^{2}=12500\Rightarrow MN=\sqrt{12500}=10\cdot 5\sqrt{5}\Rightarrow MN=50\sqrt{5}
Dar si BN^{2}=BC^{2}+CN^{2}\Rightarrow BN^{2}=10000+2500\Rightarrow BN^{2}=12500\Rightarrow BN=\sqrt{12500}=10\cdot 5\sqrt{5}\Rightarrow BN=50\sqrt{5}
Astfel obtinem ca MN=BN=50\sqrt{5}\;\; m
Deci triunghiul MNB isoscel de baza MB.
c) Masura unghiului MN si NB.
m\left(\widehat{MN,NB}\right)=m\left(\widehat{MNB}\right)=
Stim ca Triunghiul MNB este isoscel de baza BM, astfel in triunghiul ABM aplicam Teorema luin Pitagora:
BM^{2}=AM^{2}+AB^{2}\Rightarrow BM^{2}=50^{2}+150^{2}\Rightarrow BM^{2}=2500+22500\Rightarrow BM^{2}=25000\Rightarrow BM=\sqrt{25000}=5\cdot 10\sqrt{10}=50\sqrt{10}
Astfel stim ca MN=BN=50\sqrt{5} si BM=50\sqrt{10}

si cu Reciproca Teoremai lui Pitagora obtinem BM^{2}=MN^{2}+BN^{2}\Rightarrow 25000=12500+12500
Astfel obtinem ca Triunghiul MNB este dreptunghic isoscel astfel avem ca m\left(\widehat{MNB}\right)=90^{0}

2. Observam ca avem o piramida patrulatera regulata, in care triunghiul VAD este isoscel si VM mediana, inaltime, mediatoare si bisectoare deci cu teorema lui Pitagora VM^{2}=VA^{2}-AM^{2}, unde AM=MD=\frac{AB}{2}=\frac{6}{2}=3\;\; cm
Astfel VM^{2}=\left(3\sqrt{5}\right)^{2}-3^{2}\Rightarrow VM=\sqrt{45-9}\Rightarrow VM=\sqrt{36}=6\;\; dm
b) Pentru a afla cate grame de vopsea sunt necesare calculam aria laterala
A_{l}=\frac{P_{b}\cdot a_{p}}{2}
stim ca
a_{p}=VM=6 cm
Astfel A_{l}=\frac{4\cdot 6\cdot 6}{2}=\frac{24\cdot 6}{2}=\frac{12\cdot 6}{1}=72\;\; dm^{2}
Stim ca pentru 1 dm^{2} se folosec 30 g vopsea, astfel trebuie 72\cdot 30 g=2160g
deci ne trebuie 2160 g
c) \sin\left(\widehat{(VAD),(VMB)}\right)=\frac{\sqrt{3}}{2}
Dupa cum stiti cand avem sa aflam masura unghiului dintre doua plane aflam intersectia celor doua plane, astfel stim ca daca doua plane au un puncte in comun ele au si o drepata in comun, astfel  (VAD)\cap(VBC)={V}
Astfel avem VM\perp AD; VM, AD\subset(VAD)
si construim VN\perp BC; VN, BC\subset(VBC)
Astfel avem sinusul unghiului \sin\left(\widehat{VN,VM}\right)=\sin\widehat{NVM}
Observam ca MN=DC=AB=6 dm
din a) stim si ca VM=6 dm, obtinem si ca VN=6 cm, deci triunghiul MVN este echilateral.
Astfel stim ca A_{\Delta MVN}=\frac{l^{2}\sqrt{3}}{4}=\frac{36\sqrt{3}}{4}=9\sqrt{3}\; dm
Astfel mai stim si ca A_{\Delta}=\frac{MV\cdot NV\cdot \sin\widehat{MVN}}{2}=\frac{6\cdot 6\cdot\sin\widehat{MVN}}{2}=\frac{36\cdot\sin\widehat{MVN}}{2}=18\sin\widehat{MVN}
Astfel egaland ariile stim ca 18\sin\widehat{MVN}=9\sqrt{3}\Rightarrow \sin\widehat{MVN}=\frac{9\sqrt{3}}{18}=\frac{\sqrt{3}}{2}

Rezolvare subiecte Evaluarea Nationala 2015

La subiectul I

1. Tinand cont de ordinea efectuarii operatiilor, efectuam mai intai inmultirea si apoi scaderea, deci rezultatul este 0.

subiecte Evaluarea Nationala

2. Solutie

Dupa cum stim din calsele mai mici a este un extrem astfel a=\frac{4\cdot 3}{2}=\frac{12}{2}=6

3. Cel mai mare numar natural care apartine intervalului [1, 5] este 5, deoarece avem un interval inchis la ambele capatete si dupa cum bine stiti se ia si ultimul element daca avem un interval inchis.

4. Perimetrul unui Patrat este 4\cdot l, stiind ca latura este de 6 cm, atunci P_{ABCD}=4\cdot 6=24 cm

5.  Masura unghiului dintre dreptele AB si BF este m\left(\widehat{AB, BF}\right)=m\left(\widehat{ABF}\right)=90^{0}

Deoarece observam ca triunghiul ABF este dreptunghic in B.

6. Numarul elevilor care au obtinut nota 10 este egal cu 3.

Subiectul II

1. Paralelipipedul dreptunghic - Copy - Copy
2. Multipli lui 40 de doua cifre sunt
M_{40}=\left\{40, 80\right\}
Deci media aritmetica este
M_{a}=\frac{40+80}{2}=\frac{120}{2}=60
3. Notam cu x suma de bani
Stim ca in prima zi a cheltuit 30% din suma
Iar in a a doua zi restul de 35 de lei.
Astfel avem ecuatia x-30%\cdot x-35=0\Rightarrow x-\frac{30}{100}\cdot x=35\Rightarrow \frac{100x}{100}-\frac{30x}{100}=35\Rightarrow \frac{70x}{100}=35\Rightarrow \frac{7x}{10}=35\Rightarrow x=\frac{35\cdot 10}{7}=\frac{350}{7}=50\;\;lei
Iar in prima zi a cheltuit
\frac{30}{100}\cdot 50=\frac{1500}{100}=15\;\; lei
4. Avem functia liniara f:R\rightarrow R, f(x)=x+2
a) f(-2)=-2+2=0
b) Acum pentru a calcula graficul functie, stim ca
G_{f}\cap OX
y=0 si
f\left(x\right)=0\rightarrow x+2=0\Rightarrow x=-2
Deci avem primul punctu A(-2,0)
Iar G_{f}\cap OY
Avem x=0\rightarrow f(0)=2
Deci punctul B(0,2)
graficul functie Evaluarea nationala
5. Trebuie sa aratam ca expresia E(x)=-1
Asfel avem
E(x)=\frac{(x-7)(x+7)}{x(x-7)}-\frac{2x+7}{x(x+1)}\cdot\frac{x+1}{1}
Observati ca am folosit formula de calcul prescurtat a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)
Astfel expresia devine
E(x)=\frac{x+7}{x}-\frac{2x+7}{x}=\frac{x+7-2x-7}{x}=frac{-x+0}{x}=\frac{-x}{x}=-1

Probleme care se rezolva cu ajutorul ecuatiilor in multimea numerelor intregi

Dupa ce am invatat sa rezolvam ecuatii si inecuatii in multimea numerelor intregi, dupa cum bine stiti vine vremea sa invatam sa rezolvam si probleme care se rezolva cu ajutorul ecuatiilor in multimea numerelor intregi.
De rezolvat probleme cu ajutorul ecuatiilor am mai invatat si in clasele mai mici diferenta este ca atunci am invatt sa rezolvam in multimea numerelor naturale sau rationale pozitive, iar acum si pentru numerele intregi.
Dar mai intai sa ne reamintim cu rezolvam ecuatiile si incuatiile in Z.
Rezolvati ecuatiile:
a) -2x+3=-9\rightarrow -2x+3-3=-9-3\Rightarrow -2x=(-9)+(-3)\Rightarrow -2x=-12\Rightarrow x=(-12):(-3)\Rightarrow x=4
Obserervati ca mai intai am scazut din ambii membri termenul liber 3, iar apoi am efectua impartirea numerelor intregi.
b) Notiunea noua care am mai invatat-o la numere intregi a fost modulul sau valoarea absoluta a unui numar intreg, asadar rezolvam si o ecuatie cand avem si modulul unei expresii.
2|2x+1|=8|:2\Rightarrow |2x+1|=8:2\Rightarrow |2x+1|=4
Observati ca in ambii membrii am impartit printr-un 2.
Dar de la  definitia modulului stim ca
|x|=x,\;\;\; daca\;\; x>0, astfel ecuatia devine
2x+1=4\Rightarrow 2x=4-1\Rightarrow 2x=3\Rightarrow x=\frac{3}{2}, si observam ca ecuatia nu are solutii in Z
Dar mai stim si ca
|x|=-x,\;\; daca\;\; x<0
Astfel ecuatia devine
-(2x+1)=4\Rightarrow -2x-1=4\Rightarrow -2x=4+1\Rightarrow -2x=5\Rightarrow x=\frac{5}{-2}\Rightarrow x=-\frac{5}{2}, la fel ca si mai sus ecuatia nu are solutii in Z.
2.Rezolvati inecuatiile in Z.
a) -5x+10\leq -12x+31
Observam ca nu avem o ecuatie de forma ax+b\leq c, deci trebuie sa o aducem la forma de mai sus, astfel avem
-5x+12x\leq 31-10\Rightarrow 7x\leq 21\Rightarrow x\leq 21:7\rightarrow x\leq 3, asadar solutiile inecuatiei sunt
x\in\left\{3, 2, 1, 0,-1, -2,.....,...\right\}
Dar avem si ineciatii de forma
|2x-1|\leq 5
Ca sa rezolvam inecuatia in care apare si modulul trebue sa tinem cont de regula
|x|\leq a\Rightarrow -a\leq x\leq a
Asadar inecuatia devine
-5\leq 2x-1\leq 5|+1\Rightarrow -5+1\leq 2x-1+1\leq 5+1\Rightarrow -4\leq 2x\leq 6|:2\Rightarrow -4:2\leq 2x:2\leq 6:2\Rightarrow -2\leq x\leq 3
Asadar solutia inecuatiei se afla intere numere -2 si 3, adica
x\in\left\{3, 2, 1, 0, -1, -2\right\}
Dar avem si inecuatii de forma
|2x-5|\geq 7
Regula pentru rezolvarea inecuatiilor de aceasta forma este:
|x|\leq a\Rightarrow x\leq a, dar si -a\leq x
Astfel avem:
2x-5\leq 7\Rightarrow 2x\leq 7+5\Rightarrow 2x\leq 12\Rightarrow x\leq 12:2\Rightarrow x\leq 6, deci solutia inecuatiei este:x\in\left\{6, 5, 4, 3, 2,.....,\right\}
Dar mai avem de rezolvat si inecuatia:
-7\leq 2x-5\Rightarrow 2x-5\geq -7\Rightarrow 2x\geq -7+5\Rightarrow 2x\geq -2\Rightarrow x\geq -2:2\Rightarrow x\geq -1
Adica solutia inecuatiei este x\in\left\{-1, 0, 1, 2, 3,....,...\right\}
Iar daca efectuam inetersectia celor doua inecuatii
\left\{6, 5, 4, 3, 2,.....,\right\}\cap \left\{-1, 0, 1, 2, 3,....,...\right\}=\left\{6, 5, 4, 3, 2, 1,0, -1\right\}
Adica x\in Z\ \left\{ 5, 4, 3, 2, 1,0, \right\}
Dar reintorcandu-ne la cea ce noi vrem sa discutam
Adica probleme care se rezolvam cu ajutorul ecuatiilor in Z.
dupa cum am zis probleme care se rezolva cu ajutorul ecuatiilor am mai rezolvat, dar acum ne reamintim etapele pe care trebuie sa le parcurgem pentru a rezolva problemele cu ajutorul ecuatiilor in Z:
– alegem necunoscuta, de cele mai multe ori alegem ca necunoscuta ceea ce ni se cere in problema
– scriem datele problemei in functie de necunoscuta aleasa
– punem problema in ecuatie
– rezolvam ecuatia
– verificam si interpretam rezultatul
Exemplu
1. Daca inmultim un numar cu 3, iar rezultatul il adunam cu 40, obtinem -260. Aflati numarul.
Solutie:
notam cu x numarul necunoscut
formam ecuatia
3\cdot x+40=-260
dupa ce am forma ecuatia rezolvam ecuatia:
3x=-260-40\Rightarrow 3x=-300\Rightarrow x=-300:2\Rightarrow x=-10
Deci numarul gasit este -100.
2.Tatal, mama si fiul au impreuna 96 de ani.Tata este cu 8 ani mai in varsta decat mama, iar fiul este cu 20 de ani mai tanar decat mama. aflati cati ani are fiecare.

Solutie:

Notam cu

– x varsta tatalui

– y varsta mamei

– y varsta fiului

Astfel avem ecuatia x+y+z=96 Tatal, mama si fiul au impreuna 96 de ani.

x=8+y Tatal este cu 8 ani mai in vatsta

z=y-20

astfel boservati ca in cazul de fata avem trei ecuatii cu trei necunoscute, daca inlocuim in prima ecuatie obtinem

8+y+y+y-20=96\Rightarrow 3y-12=96\Rightarrow 3y=96+12\Rightarrow 3y=108\Rightarrow y=108:3\Rightarrow y=36

Deci am obtinut ca mama are 36 ani, iar tata

x=8+y\Rightarrow x=8+36\Rightarrow x=44, adica tata are 44 ani, iar fiul z=y-20\Rightarrow z=36-20\Rightarrow z=16

Asadar este foarte important sa cunoastem etapele pe care trebuie sa le parcurgem pentru a rezolva probleme, dar si sa stim sa rezolvam ecuatii in multimea numerelor intregi.

 

Probleme rezolvate cu functiile trigonometrice

Prezentam o problema pe care o rezolvam cu ajutorul functiilor trigonometrice, dar si probleme rezolvate cu ajutorul ecuatiilor

Rombul ABCD are latura AB=10 cm .Daca tg unghiului \tan\widehat{BAC}=\frac{3}{4} ,determinati lungimile diagonalelor .

Demonstratie:

Stim ca diagonalele intr-un romb sunt perpendiculare astfel avem ca: AC\cap BD=\left\{O\right\}

Dar si AC\perp BD

Deci avem ca: \Delta BAO este dreptunghic in O, adica putem aplica  functiile trigonometrice 

\tan\widehat{BAC}=\tan\widehat{BAO}=\frac{BO}{AO}\Rightarrow \frac{3}{4}=\frac{BO}{AO}\Rightarrow BO=\frac{3}{4}\cdot AO

Dar cu Teorema lui Pitagora avem ca:

AB^{2}=AO^{2}+BO^{2}\Rightarrow 10^{2}=AO^{2}+\left(\frac{3}{4}\cdot AO\right)^{2}\Rightarrow AO^{2}+\frac{9}{16}AO^{2}=100\Rightarrow \frac{16}{16}AO^{2}+\frac{9}{16}AO^{2}=100\Rightarrow \frac{25}{16}AO^{2}=100\Rightarrow AO^{2}=100:\frac{25}{16}\Rightarrow AO^{2}=100\cdot\frac{16}{25}\Rightarrow AO^{2}=4\cdot 16\Rightarrow AO=\sqrt{4\cdot 16}=2\cdot 4\Rightarrow AO=8\;\; cm

Iar AC=2\cdot AO=2\cdot 8=16

cum  aplicam functiile trigonometriceIar BO=\frac{3}{4}\cdot 8=\frac{3\cdot 8}{4}=\frac{24}{4}=6\;\; cm

Iar BD=2\cdot BO=2\cdot 6=12\;\; cm

2. Petre citeste o carte in 3 zile.In prima zi  el citeste de 2 ori mai mult decat in a doua zi , iar in a treia zi citeste jumatate din numarul de pagini citite in a doua zi . Cartea are 56 de pagini. Afla cate pagini a citit elevul in fiecare zi.

Solutie:

Notam cu x numarul de pagini citite in a doua zi:

In prima zi  citeste: 2x

In a trei zi citeste \frac{x}{2}

Astfel avem: 2x+x+\frac{x}{2}=56\Rightarrow \frac{4x}{2}+\frac{2x}{2}+\frac{x}{2}=56\Rightarrow

\frac{7x}{2}=56\Rightarrow x=56:\frac{7}{2}\Rightarrow

x=56\cdot\frac{2}{7}\Rightarrow x=8\cdot 2=16

Deci in a doua zi 16 pagini.

Iar in prima zi 2\cdot x=2\cdot 16=32

Iar in a treia zi \frac{x}{2}=\frac{16}{2}=8

3. Suma a 5 nr consecutive este egala cu 5 sa sa afle nr

Solutie:

Fie n, n+1, n+2, n+3, n+4 numerele consecutive

n+n+1+n+2+n+3+n+4=5

De unde obtinem: 5n+10=5
Adica obtinem  5n=5-10
Adica
5n=-5
Iar n=-1
Adica primul numar este -1
Al doilea numar este: n+1=-1+1=0
Al treilea numar este n+2=-1+2=1
Al patrulea n+3=-1+3=2
Iar la V lea n+4=-1+4=3
Deci numerele sunt: -1; 0; 1; 2; 3;

Model Teza clasa a vii a

Lucrare scrisa la matematica
Clasa a VII a
Semestrul al II-lea

Completati enunturile cu raspunsul corect:(40 puncte)
1. Rezultatul calculului \left(2+\sqrt{3}\right)+|4\sqrt{3}-7| este…….
2. In m\left(\widehat{A}\right)=90^{0}, m\left(\widehat{B}\right)=30^{0} si AC=3 cm, atunci BC=….
3.Daca un triunghi dreptunghic are catetele de lungime egala cu 3 cm, respectiv 4 cm, atunci lungimea ipotenuzei este de …… cm.
4. Solutiile reale ale ecuatiei 16x^{2}-9=0 sunt ….. si……
5. Ionel cheltuieste 30% din suma de bani pe care o avea si astfel ramane cu 84 de lei. Ionel aveam ….. lei
6. Daca a-b=5 si a^{2}-b^{2}=420, atunci valoarea sumei a+b este….
7. Aria unui triunghi dreptunghic ABC m\left(\widehat{A}\right)=90^{0} cu BC=10 cm si AB=8 cm este….
8. Descompunerea in factori a expresia x^{2}-xy-4+2y este……
9.Consideram A si B doua puncte pe un cerc de centru O si raza r=8 cm, astfel incat AB=8\sqrt{3}\;\; cm. Atunci masura arcului mic AB este…….

Subiectul II
La urmatoarele probleme se cer rezolvari complete

1. Aratati ca numarul a=\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)-\left(2-\sqrt{3}\right)^{2}-\sqrt{48} este intreg
2. Rezolvati ecuatia 3\left(2x-1\right)-5\left(3x-1\right)=1
3. Calculati E=\sin 45^{0}\cdot \cos 30^{0}-\sin 30^{0}\cdot cos 45^{0}
4.Trapezul dreptunghic ABCD are AB||CD m\left(\widehat{A}\right)=90^{0} si AB=6 cm, BC=5 cm,, CD=2 cm
a) Aratati ca inaltimea trapezului este egala cu 3 cm
b) Perimetrul si aria trapezului, dar si \sin\left(\widehat{ABC}\right)
c) Calculati Perimetrul triunghiului MAB unde {M}=AD\cap BC

Marimi invers proportionale

Marimile direct proportionale, dar si marimile invers proportionale joaca un rol important in in viata de zi cu zi. Despre marimi direct proportionale am mai vorbit, pentu cei care nu isi mai amintesc click aici.

Astfel acum definim notiunea de marimi invers proportionale:

Definitie: doua marimi se numesc invers proportionale, daca atunci cand una creste (scade) de un numar de ori, atunci cealalta se micsoreaza (creste) de acelasi numar de ori.

Exemplu:
Numarul de muncitori si numarul de zile in care finalizeaza lucrarea.
astfel avem:
Numaru muncitori                                      Numar zile
8                                                                      6
16                                                                    3
4                                                                    12

Din tabelul de mai sus avem ca
\frac{8}{16}=\frac{3}{6}; \frac{16}{4}=\frac{12}{3}; \frac{8}{4}=\frac{12}{6}
cu ajutorul exemplului de mai sus obtinem:

Proprietatile marimilor invers proportionale:

Raportul a doua valori din prima marime este egala cu inversul raportului valorilor corespunzatoare din cealalta marime.

Produsul valorilor corespunzatoare din cele doua marimi este constant.

Definitie: Fiind date doua multimi

A=\left\{a_{1}, a_{2},...,a_{n}\right\} si B=\left\{b_{1}, b_{2},...,b_{n}\right\}, spunem ca intele elementele acestor multimi exista o dependenta invers proportionala (adica sunt invers proportionale), daca \frac{a_{1}}{\frac{1}{b_{1}}}=\frac{a_{2}}{\frac{1}{b_{2}}}=...=\frac{a_{n}}{\frac{1}{b_{n}}} sau a_{1}\cdot b_{1}=a_{2}\cdot b_{2}=...=a_{n}\cdot b_{n}.

Aplicatii:

1. Aflati numerele rationale pozitive a, b, c invers proportionale cu 1, \frac{1}{2}, \frac{1}{3} daca

10ab-10ac-bc=1,76

Solutie: Numerele \left\{a, b, c\right\} invers proportionale cu \left\{1, \frac{1}{2}, \frac{1}{3}\right\}, daca \frac{a}{\frac{1}{1}}=\frac{b}{\frac{1}{\frac{1}{2}}}=\frac{c}{\frac{1}{\frac{1}{3}}}=k

Ca sa ne fie mai usor le-am egalat cu k, si obtinem:

\frac{a}{\frac{1}{1}}=k\Rightarrow a=1\cdot k=k

Astfel obtinem si \frac{b}{\frac{1}{\frac{1}{2}}}=k\Rightarrow b=\frac{1}{\frac{1}{2}}\cdot k=2\cdot k

Dar si \frac{c}{\frac{1}{\frac{1}{3}}}=k\Rightarrow c=\frac{1}{\frac{1}{3}}\cdot k=3\cdot k

Mai stim si ca 10\cdot k\cdot 2k+10\cdot k\cdot 3k-2k\cdot 3k=1,76\Rightarrow 20k^{2}+30k^{2}-6k^{2}=1,76\Rightarrow 44k^{2}=1,76\Rightarrow k^{2}=1,76:44\Rightarrow k^{2}=0,04\Rightarrow k^{2}=\left(0,2\right)^{2}\Rightarrow k=0,2. Astfel obtinem : a=0,2

Acum aflam b=2\cdot k=2\cdot 0,2=0,4

Si c=3\cdot k=3\cdot 0,2=0,6

Asadar este foarte important sa intelegem notiunea de marime invers proportionala, cat si marimi direct proportionale, notiuni care sunt folositoare si in rezolvarea problemelor dein viata de zi cu zi.