Model Teza clasa a vii a

Lucrare scrisa la matematica
Clasa a VII a
Semestrul al II-lea

Completati enunturile cu raspunsul corect:(40 puncte)
1. Rezultatul calculului \left(2+\sqrt{3}\right)+|4\sqrt{3}-7| este…….
2. In m\left(\widehat{A}\right)=90^{0}, m\left(\widehat{B}\right)=30^{0} si AC=3 cm, atunci BC=….
3.Daca un triunghi dreptunghic are catetele de lungime egala cu 3 cm, respectiv 4 cm, atunci lungimea ipotenuzei este de …… cm.
4. Solutiile reale ale ecuatiei 16x^{2}-9=0 sunt ….. si……
5. Ionel cheltuieste 30% din suma de bani pe care o avea si astfel ramane cu 84 de lei. Ionel aveam ….. lei
6. Daca a-b=5 si a^{2}-b^{2}=420, atunci valoarea sumei a+b este….
7. Aria unui triunghi dreptunghic ABC m\left(\widehat{A}\right)=90^{0} cu BC=10 cm si AB=8 cm este….
8. Descompunerea in factori a expresia x^{2}-xy-4+2y este……
9.Consideram A si B doua puncte pe un cerc de centru O si raza r=8 cm, astfel incat AB=8\sqrt{3}\;\; cm. Atunci masura arcului mic AB este…….

Subiectul II
La urmatoarele probleme se cer rezolvari complete

1. Aratati ca numarul a=\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)-\left(2-\sqrt{3}\right)^{2}-\sqrt{48} este intreg
2. Rezolvati ecuatia 3\left(2x-1\right)-5\left(3x-1\right)=1
3. Calculati E=\sin 45^{0}\cdot \cos 30^{0}-\sin 30^{0}\cdot cos 45^{0}
4.Trapezul dreptunghic ABCD are AB||CD m\left(\widehat{A}\right)=90^{0} si AB=6 cm, BC=5 cm,, CD=2 cm
a) Aratati ca inaltimea trapezului este egala cu 3 cm
b) Perimetrul si aria trapezului, dar si \sin\left(\widehat{ABC}\right)
c) Calculati Perimetrul triunghiului MAB unde {M}=AD\cap BC

Piramida triunghiulara regulata

Sa invatam despre Piramida triunghiulara regulata  printr-o rezolvare !

2. Fie piramida triunghiulara regulata SABC cu h=4 cm si volumul = 36√3 . Aflati :

a) latura bazei si aria laterala a piramidei
b) tangenta unghiului format de muchia SA cu planul bazei
c) distanta de la punctul O la planul (SBC)

Demonstratie:

a) Stim ca intr-o piramida triunghiulara regulata volumul este :

V=\frac{A_{b}\cdot h}{3}\Rightarrow 36\sqrt{3}=\frac{A_{b}\cdot 4}{3}\Rightarrow A_{b}\cdot 4=36\sqrt{3}\cdot 3\Rightarrow A_{b}=\frac{36\sqrt{3}\cdot 3}{4}^{(4}\Rightarrow A_{b}=9\sqrt{3}\cdot 3\Rightarrow A_{b}=27\sqrt{3}\;\; cm

Dar cum stim ca baza piramidei triunghiulare regulate este un triunghi echilateral obtinem A_{b}=\frac{l^{2}\sqrt{3}}{4}

Astfel obtinem: \frac{l^{2}\sqrt{3}}{4}=27\sqrt{3}\Rightarrow l^{2}\sqrt{3}=4\cdot 27\sqrt{3}\Rightarrow l^{2}=27\cdot 4\Rightarrow l=\sqrt{108}=6\sqrt{3}\;\; cm

Deci obtinem ca latura patratului este l=6\sqrt{3}
unghiul unei drepte cu un plan Stim ca A_{l}=\frac{P_{b}\cdot a_{p}}{2}
Stim ca P_{b}=3\cdot l=3\cdot 6\sqrt{3}=18\sqrt{3}
Acum trebuie sa aflam si apotema piramidei, astfel stim ca a_{p}^{2}=a_{b}^{2}+h^{2}

Dar stim ca a_{b}=\frac{l\sqrt{3}}{6}=\frac{6\sqrt{3}\sqrt{3}}{6}=3

Deci cu informatile de mai sus avem ca: a_{p}^{2}=3^{2}+4^{2}\Rightarrow a_{p}^{2}=9+16\Rightarrow a_{p}=\sqrt{25}\Rightarrow a_{p}=5
Astfel obtinem ca A_{l}=\frac{18\sqrt{3}\cdot 5}{2}=9\sqrt{3}\cdot 5=45\sqrt{3}\;\; cm^{2}

b) \tan\left(\widehat{SA,(ABC)}\right)
Pentru a afla unghiul unei drepte cu un plan trebuie sa calculam
pr_{(ABC)}SA adica proiectia dreptei SA pe planul ABC
Asftel aflam mai intai: pr_{(ABC)}S=O
Dar si pr_{(ABC)}A=A
Astfel obtinem: pr_{(ABC)}SA=AO
Si obtinem: \tan\widehat{\left(SA,(ABC)\right)}=\tan\widehat{\left(SA, AO\right)}=\tan\widehat{SAO}

Cu triunghiul SAO este dreptunghic aplicam:
\tan\widehat{SAO}=\frac{cateta. opusa}{cateta. alaturata}=\frac{SO}{AO}=\frac{4}{6}^{(2}=\frac{2}{3}
Unde AO=\frac{l\sqrt{3}}{3}=\frac{6\sqrt{3}\cdot\sqrt{3}}{3}=\frac{6\cdot 3}{3}=6
unghiul unei drepte cu un plan
Formulele pe care le-am enutat mai sus trebuie retiunte.

c) d\left(O,(SBC)\right)
Distanta de un punct la un plan este piciorul perpendicularei din punctul dat pe plan.
Observam ca OM\perp BC
Dar si SM\perp BC
Deci obtinem BC\perp (SMO)
Acum construim perpendiculara din O pe SM, adica, fie OD\perp SM, unde SM\subset (SBC)

Si cu Reciproca celor Trei perpendiculare obtinem: OD\perp (SBC)
Observam ca triunghiul SOM este dretunghic, deci cu Teorema inaltimii obtinem:

OD=\frac{OS\cdot OM}{SM}=\frac{4\cdot 3}{5}=\frac{12}{5}=2,4\;\; cm
distanta de la un punct la un plan

Cilindrul circular drept

Cilindrul circular drept face parte din categoria corpurilor rotunde, corpuri care in acest an scolar pentru elevii de clasa a VIII a joaca un rol destul de important, datorita faptului ca pentru Evaluarea Nationala apar probleme din acest capitol.
Incepem prin a desena un cilindru circular drept, a observa conventiile de desen, dar si notatiile precum si elementele componente, cat si cum calculam aria laterala, aria totala si volumul acestui corp.
elementele componente ale unui cilindru circular drept
Convetii de desen:
OA=OB=OA’=OB’=R (raza bazei sau raza cilindrului)
AB=A’B’= diametrul cercurilor de centru O si raza R.
AA’=G= generatoarea cilindrului
OO’=H= inatimea cilindrului.

Elementele cilindrului circular drept:
– bazele cilindrului cele 2 cercuri: C\left(O, R\right) si C\left(O', R'\right)
– dreptunghiul ABA’B’
– generatoarea G, care este egala cu muchia laterala, dar si inaltimea cilindrului, adica AA’=G=OO’=H

Generatoarea unui cilindru circular drept este egala cu muchia laterala a cilindrului
Inaltimea unui cilindru circular drept este egala cu distanta dintre cele doua baze ale cilindrului, care este egala si cu generatoarea cilindrului.
-OO’ se numeşte axa de rotaţie a cilindrului.

Cum calculam aria laterala, aria totala si volumul cilindrului drept.

Foarte important sa stim ca cilindrul circular drept are aspectul unei prisme, astfel stim ca formula generala a unei prisme pentru calculul ariei este:
A_{laterala}=P_{bazei}\cdot H
Stim ca baza cilindrului circular este un cerc, astfel avem P_{baza}=2\pi\cdot R
Astfel aria laterala este A_{laterala}=A_{l}=2\pi\cdot R\cdot H
Iar aria totala este: A_{totala}=A_{t}=A_{l}+2\cdot A_{B}
Aria bazei, cum o calculam.

Baza cilindrului circular este un cerc astfel avem ca aria cercului este:
A_{B}=\pi\cdot R^{2}
Astfel obtinem A_{t}=2\pi\cdot R\cdot H+2\cdot\pi\cdot R^{2}
deoarece H=G, adica inaltimea este egala cu generatoarea obtinem ca:
A_{t}=2\phi\cdot R\cdot G+2\cdot\phi\cdot R^{2}=2\phi \cdot R\left(G+R\right)
Iar volumul cilindrului circular drept este egal cu:
V=A_{B}\cdot H=\pi\cdot R^{2}\cdot H, dar putem sa scriem si V=\pi\cdot R^{2}\cdot G

Aplicatii:

Un cilindru circular drept are volumul V=150\pi\;\; cm^{3} si aria sectiunii axiale de 60\;\; cm^{2}. Determinati raza si generatoarea cilindrului.

Demonstratie:
Stim ca volumul unui cilindru circular drept este egla cu V=\pi\cdot R^{2}\cdot H
De unde obtinem: 150\;\; \pi=\pi\cdot R^{2}\cdot H\Rightarrow 150=R^{2}\cdot H
Stim de mai sus ca H=G, astfel obtinem: 150=R^{2}\cdot G
Dar mai stim si ca aria sectiunii axiale este egala cu 60, observam ca aria sectiunii axiale este dreptunghiul ABA’B’
Astfel stim ca A_{ABA'B'}=L\cdot l=G\cdot 2\cdot R
Astfel obtinem 60=G\cdot 2\cdot R\Rightarrow R\cdot G=60:2\Rightarrow R\cdot G=30\Rightarrow G=\frac{30}{R}

Dar mai stim si ca R^{2}\cdot G=150\Rightarrow R^{2}\cdot \frac{30}{R}=150\Rightarrow R\cdot 30=150\Rightarrow R=150:30\Rightarrow R=5\;\; cm
Si astfel am obtinut ca R=5 cm, iar pentru a afla G=\frac{30}{R}=\frac{30}{5}=6\;\; cm
Deci am obtinut ca G=6 cm, adica generatoarea are 6 cm.
probleme rezolvate cu cilindru circular drept
Prezentam o problema care a fost data la o testare nationala
2. Desenati un cilindru circular drept
Dreptunghiul ABCD este o sectiune axiala a cilindrului. Inaltimea cilindrului este de 12 cm, iar diametrul [AB] ala uneia dintre baze are lungimea de 10 cm.
b) Calculati aria laterala a cilindrului
c) Calculati volumul cilindrului
d) Aratati ca cel mai scurt drum intre A si C, parcurs pe suprafata laterala a cilindrului, are lungimea mai mica de 20 cm.
Demonstratie:
cum arata un cilindru circulart drept Stim ca AD= 12 cm si AB=10 cm, astfel obtinem R=\frac{AB}{2}=\frac{10}{2}=5\;\; cm, deci raza cilindrului este de 5 cm.

b) Calculam aria laterala a cilindrului A_{l}=P_{b}\cdot H
Mai intai calculam perimetrul bazei, P_{B}=2\pi\cdot r=2\pi\cdot 5=10\pi
Iar stim ca H=AD=12 cm si aria laterala este: A_{l}=10\pi\cdot 12=120\pi\;\; cm^{2}

c) V=A_{B}\cdot H=\pi\cdot 5^{2}\cdot 12=\pi\cdot 25\cdot 12=300\;\;cm^{3}.

d) Daca desfasuram suprafata laterala a cilindrului circular drept, obtinem dreptunghiul BB'C'C pozitiile punctelor A si D pe desfasurare vor fi A' respectiv D'.
desfasuratea laterala a cilindrului circular drept
Astfel avem ca:
BB'=2\pi \cdot R=2\pi\cdot 5=10\pi si astfel obtinem
A'B'=\frac{BB'}{2}=\frac{10\pi}{2}=5\pi
Iar B'C'=BC=G=12 cm

Asadar cel mai scurt drum intre A si C parcurs pe suprafata laterala a cilindrului circular drept este egala cu lungimea segmentului A'C'=\sqrt{A'B'^{2}+B'C'^{2}}=\sqrt{\left(5\pi\right)^{2}+12^{2}}=\sqrt{25\pi^{2}+144}

Acum sa vedem daca A'C'<20
Astfel avem ca A'C'<20\Leftrightarrow\sqrt{25\pi^{2}+144}<20|^{2}\Leftrightarrow 25\pi{2}+144<400\Leftrightarrow 25\pi^{2}<400-144\Rightarrow 25\pi^{2}<256\pi^{2}<256:25\Leftrightarrow \pi^{2}<10,24
Acum stim ca 3,14\leq\pi\leq 3,15

Astfel consideram \pi=3,15 si obtinem
\left(3,15\right)^{2}=9,9225<10,24, deci cel mai scurt drum intre A si C este mai mic de 20 cm.

Simetria fata de o dreapta

Majoritatea uita notiunea de simetria fata de o dreapta, adica simetricul unui punct fata de o dreapta sau, mai mult, unui dintre voi stiti ce inseamna dar nu stiti sa o construiti. Astfel stim de la simetria unui punct fata de un punct ca:
Simetricul unui punct A fata de un punct O este punctul B cu proprietatea ca distanta de la A la O este egla cu distanta de la B la O, cu alte cuvinte ca O este mijlocul segmentului AB.
CUM DESENAM SIMETRICUL UNUI PUNCT FATA DE UN PUNCT

si notam: S_{O}A=B sau S_{O}B=A
Dar noi astazi o sa discutam despre simetria unui punct fata de o dreapta.

Definitie: Doua punct A si B se numesc simetrice fata de o dreapta d, daca dreapta d este mediatoarea segmentului [AB].
cum arata simetria unui punct fa
Observatie: Daca doua puncte sunt simetrice in raport cu o dreapta atunci fiecare dintre ele este simetricul celuilalt fata de dreapta data.
La fel ca mai sus notam S_{d}A=B si citim simetricul punctului A fata de dreapta d este punctul B. Astfel daca avem
S_{d}A=B\Rightarrow d\perp AB, d\cap AB={O}, [OA]\equiv[OB]
Aplicatii: Fie D un punct pe ipotenuza [BC] in triunghiul dreptunghic ABC. Notam cu E, respectiv F simetricele punctului D fata de AB, respectiv AC. Aratati ca:

a) punctele E, A, F sunt coliniare
b) EF=2\cdot AD

Demonstratie:
Fie DE\cap AB=\left\{M\right\} si DF\cap AC=\left\{P\right\}
Si in dreptunghiul AMDP construim diagonala AD
Astfel avem triunghiurile \Delta AMD si \Delta AME
Astfel avem [AM]\equiv[AM] (latura comuna)
[MD]\equiv [ME] (E erste simetricul lui D fata de AB)
\widehat{AMD}\equiv\widehat{AME}

Deci cu cazul de congruenta L.U.L \Delta AMD\equiv\Delta AME de unde obtinem ca \widehat{MAD}\equiv\widehat{MAE}
Dar si \Delta APD si \Delta APF adica avem [AP]\equiv[AP](latura comuna)
[PD]\equiv[PF](F este simetricul lui D fata de dreapta AC)
Dar si \widehat{APF}\equiv\widehat{APD}
Si cu cazul de congruente L.U.L obtinem ca \Delta APD\equiv\Delta APF
de unde obtinem ca \widehat{PAD}\equiv\widehat{PAF}

Si astfel avem ca m\left(\widehat{EAF}\right)=m\left(\widehat{EAM}\right)+m\left(\widehat{MAD}\right)+m\left(\widehat{DAP}\right)+m\left(\widehat{PAF}\right)=2\cdot\left(m\left(\widehat{MAD}\right)+m\left(\widehat{PAD}\right)\right)=2\cdot 90^{0}=180^{0}, deci punctele F, A, E sunt coliniare.
simetria unui punct fata de o dreapta

b) EF=2\cdot AD
Observam ca EF=EA+AF
Mai sus am demonstrat ca \Delta AEM\equiv\Delta ADM, de unde obtinem si ca [AE]\equiv[AD]
Dar mai stim si ca \Delta APD\equiv\Delta APF, adica [AD]\equiv[AF]
Si astfel obtinem EF=AE+AF=AD+AD=2\cdot AD, ceea ce trebuia sa demonstram.
2. Daca C\notin AB si D este simetricul punctului C fata de AB, aratati ca \Delta ABC\equiv\Delta ABD
Demonstratie:

Fie AB\cap CD=\left\{O\right\}
Astfel consideram triunghiurile:
\Delta AOC si \Delta AOD dreptunghice, deoarece AB mediatoarea dreptei CD
[AO]\equiv[AO] (latura comuna)
[CO]\equiv[DO](D este simetricul lui C fata de dreapta AB)
Astfel obtinemn cu cazul C.C ca
\Delta AOC\equiv\Delta AOD so obtinem ca [AC]\equiv[AD] (1)
Acum consideram triunghiurile:
\Delta COB si \Delta DOB, dreptunghice, deoarece AB mediatoarea dreptei CD si avem:
[CO]\equiv[DO] (deoarece D simetricul lui C fata de AB)
[BO]\equiv[BO](latura comuna) si cu cazul de congruneta C.C obtinem ca
\Delta COB\equiv\Delta DOB, de unde obtinem si ca [CB]\equiv[DB] (2)
Astfel avem triunghiurile:
\Delta ABC si \Delta ABD
Stim ca [AC]\equiv[AD] (din (1))
Dar si [CB]\equiv[DB] (din (2))
Si observam ca [aB]\equiv[AB] (latura comuna) si astel cu cazul de congruenta de la la truighiuri oarecare L.L.L obtinem ca \Delta ABC\equiv\Delta ABD.
cum arata simetricul unui punct fata de o dreapta
Asadar este foarte important sa cunoastem notiunea de simetricul unui punct fata de un punct, dar si simetria unui punct fata de o dreapta, notiuni care sunt destul de importante, constituind baza pentru ceea ce v-a urma.

Bisectoarea unui unghi Proprietatea bisectoarei

Despre bisectoarea unui unghi am mai invatat si in primul semestru la capitolul Unghi. Dar acum discutam si de proprietatea bisectoarei, cat si despre concurenta bisectoarelor intr-un triunghi, deoarece dupa cum am mai spus si intr-un alt articol, bisectoarea este una din liniile importante intr-un triunghi.

Astfel reamintindu-ne definitia bisectoarei spunem ca:

Definitie: Bisectoarea unui unghi este semidreapta cu originea in varful unghiului, interioara unghiului si care care imparte  unghiul in doua unghiuri.

cum rezolvam problemele cu bisectoare

Proprietatile bisectoarei:
Un punct interior unui unghi este situat la egala distanta de laturile unghiului daca si numai daca apartine bisectoarei acelui unghi.
punctele interioare ale unui unghi
Avem in ipoteza [OZ bisectoare unghiului \widehat{XOY}
M\in [OZ

Concluzie: d(M, OX)=d(M, OY)

Astfel stim ca distanta de la un punct la o dreapta este piciorul perpendicularei din punctul dat pe drepata respectiva.

Stim ca [OZ este bisectoarea unghiului \widehat{XOY}, astfel avem:
\widehat{XOZ}\equiv\widehat{YOZ}
Mai stim si ca MA\perp[OX, A\in [OX\Rightarrow d\left(M, OX\right)=MA
Dar si MB\perp[OY, B\in [OY\Rightarrow d\left(M, OY\right)=MB
Iar in triunghiurile MAO si MBO, avem m\left(\widehat{MAO}\right)=m\left(\widehat{MBO}\right)=90^{0}, adica avem triunghiuri dreptunghice.
Mai stim si ca [MO]\equiv[MO](latura comuna)
Dar si \widehat{MOA}\equiv\widehat{MOB}
Deci cu cazul de congruenta de la triunghiurile dreptunghice I.U, avem ca
\Delta MAO\equiv\Delta MBO de unde obtinem ca [MA]\equiv[MB], adica d(M, OX)=d(M, OY)

locul geometric al bisectoarei unui unghi
Bisectoarea unui unghi este locul punctelor situate la egala distanta de laturile unui triunghi.

Teorema. Bisectoarele unghiurilor unui triunghi sunt concurente. Punctul de intersectie al bisectoarelor este situat la distanta egala de laturile triunghiului se noteaza cu I. Punctul de concurenta al bisectoarelor se numeste centrul cercului inscris.

Centrul inscris in triunghi este cercul care este tangent la laturile triunghiului, adica are in comun un singur punct cu fiecare latura a triunghiului.

cum arata bisectoarele intr-un triunghi
Observati ca AA’, BB’ si CC’ sunt bisectoare in triunghiul ABC, adica
– AA’ bisctoarea unghiului \widehat{BAC}
– BB’ bisctoarea unghiului \widehat{ABC}
– CC’ bisctoarea unghiului \widehat{ACB}
Iar punctul de intersectie il notam cu I, numit centrul cercului inscris.
cum se noteaza punctul de intersectie al bisectoarelor
Aplicatii:

In triunghiul \Delta ABC avem: D\in(BC), E\in(AC), F\in(AB) astfel incat AD\perp BC, \widehat{ABE}\equiv\widehat{CBE}, \widehat{ACF}\equiv\widehat{BCF}, BE\cap CF\cap AD=\left\{I\right\}. Aratati ca [AB]\equiv[AC]
Demonstratie:

Observam ca [BE si [CF sunt bisectoarele unghiurilor \widehat{ABC}, \widehat{ACB} dar si BE\cap CF\cap AD=\left\{I\right\}, atunci obtinem si ca [AD este bisectoarea unghiului \widehat{BAC}, adica obtinem ca:
\widehat{BAD}\equiv\widehat{CAD}
Astfel consideram triunghiurile: \Delta BAD si \Delta CAD
unde am gasit ca:

\widehat{BAD}\equiv\widehat{CAD}
[AD]\equiv[AD] (latura comuna)
Dar si \widehat{BDA}\equiv\widehat{CDA} (deoarece AD\perp BC, adica formeaza un unghi de 90^{0})
Si cu cazul de congruneta U.L.U, obtinem ca \Delta BAD\equiv\Delta CAD, de unde obtinem si ca [AB]\equiv[AC] ceea ce trebuia sa demonstram.

bisectoarea unui unghi intr-un triunghi

Mediana in triunghi Concurenta medianelor unui triunghi

Liniile importante in triunghi joaca un rol crucial in rezolvarea problemelor, astfel intr-un triunghi liniile importante sunt: mediana, mediatoarea,bisectoarea si inaltimea,  ,dar si mediana

Astfel, astazi, discutam despre mediana si incepem prin a defini notiunea de mediana:

Definitie: Segmentul care uneste un varf al triunghiului cu mijlocul laturii opuse se numeste mediana.

cum definim mediana intr-un triunghi
Trebuie sa stim ca intr-un triunghi putem sa ducem trei mediane.
Daca construiti toate cele trei mediane intr-un triunghi o sa observati ca medianele sunt concurente, iar punctul lor de intersectie se noteaza cu G, numit centru de greutate al triunghiului.
cum sunt medianele intr-un triunghi
Deci e important sa retinem urmatoarea teorema :

Teorema. Medianele unui triunghi sunt concurente, iar punctul de intersectie se noteaza cu G, numit centru de greutate al triunghiului, fiind situat la doua treimi fata de varf si o treime fata de baza.

Astfel avem: \Delta ABC si avem AM\cap BN\cap CP=\left\{G\right\}, adica sunt concurente si punctul de intersectie se noteaza cu G.
Si mai stim si ca:
AG=\frac{2}{3}\cdot AM
BG=\frac{2}{3}\cdot BN
CG=\frac{2}{3}\cdot CP
Atentie intr-un triunghi oarecare medianele sunt concurente, dar nu si congruente (adica nu au aceiasi lungime)

Mai stimisi ca:
GM=\frac{1}{3}\cdot AM
GN=\frac{1}{3}\cdot BN
GP=\frac{1}{3}\cdot CP

Aplicatii:
1. Fie \Delta ABC, in care avem [AB]\equiv[AC], iar [BM], [CP] mediane. Aratati ca [BM]\equiv[CP].
Astfel avem in ipoteza
Ipoteza: \Delta ABC

[AB]\equiv[AC]
[BM], [CP] mediane.

Concluzie
[BM]\equiv[CP]].
Demonstratie:
medianele intr-un triunghi isoscel
Astfel consideram triunghiurile:
\Delta ABM si \Delta ACP, in care stim ca
[AB]\equiv[AC] (din ipoteza, deoarece triunghiul ABC isoscel)
[AM]\equiv[AP](cum [AB]\equiv [AC], obtinem ceea ce am spus)
Dar si \widehat{BAM}\equiv\widehat{CAP}

Deci cu cazul de congruneta L.U.L, obtinem ca \Delta ABM\equiv\Delta ACP si astfel obtinem si ca [BM]\equiv [CP].

Deci trebuie sa remarcam ca medianele corespunzatoare laturilor congruente intr-un triunghi isoscel sunt congruente.

Nu acelasi lucru putem sa-l spunem si despre mediana corespunzatoare bazei intr-un triunghi isoscel.

Calculul de distante si unghiuri

Prezentam rezolvarea unei probleme in care calculam distanta de la un punct la un plan, dar si distanta de la un punct la o dreapta, cat si masura unghiului diedru a doua plane.

Pe planul triunghiului dreptunghic ABC (m(<A)=90) cu AB =30 cm ,AC= 40cm, se ridica perpendiculara AP cu AP=8\sqrt{3}

Aflati:

a) distanta de la punctul P la dreapta BC
b) distanta de la punctul A la planul (PBC)
c)masura unghiului dietru format de planele (PBC)si(ABC)

Demonstratie:
Stim din ipoteza ca AP\perp (ABC), astfel in triunghiul dreptunghic ABC construim inaltimea AD, adica AD\perp BC
Stim ca AD\subset (ABC), deci cu Teorema celor trei perpendiculare rezulta ca si PD\perp BC si astfel distanta de la P la BC este PD d(P, BC)=PD

Dar mai intai aflam AD, stim ca triunghiul ABC este dreptunghic, deci mai intai aflam ipotenuza, adica BC^{2}=AB^{2}+AC^{2}\Rightarrow BC^{2}=30^{2}+40^{2}\Rightarrow BC=\sqrt{900+1600}\Rightarrow BC=\sqrt{2500}=50\;\; cm

Acum cu Teorema inaltimii in triunghiul dreptunghic ABC obtinem:
AD=\frac{AB\cdot AC}{BC}=\frac{30\cdot 40}{50}=\frac{30\cdot 4}{5}=\frac{6\cdot 4}{1}=24\;\; cm
Observati ca mai sus am efectuat cateva simplificari pentru a ne usura calculele.
Acum ca stim si AD si AP, in triunghiul dreptunghic PAB, aplicam Teorema lui Pitagora PD^{2}=PA^{2}+AD^{2}\Rightarrow PD=\left(8\sqrt{3}\right)^{2}+24^{2}\Rightarrow PD=\sqrt{64\cdot 3+576}\Rightarrow PD=\sqrt{192+576}=\sqrt{768}=16\sqrt{3}\;\; cm
cum aplicam Teorema celor trei perpendiculare

b) distanta de la punctul A la planul (PBC)

Observam ca PA\perp AB, Dar si PA\perp AC, stim si ca AD\perp BC
Astfel construim perpendiculara din A pe pe PD, astfel fie AE\perp PD, dar observam ca PD\subset(PBC), deci cu Reciproca celor trei perpendiculare obtinem ca AE\perp (PBC)

Deci avem ca d(A\left(PBC\right))=AE
Astfel stim ca triunghiul PAD este dreptunghic in A, deci cu Teorema inaltimii obtinem AE=\frac{PA\cdot AD}{PD}=\frac{8\sqrt{3}\cdot 24}{16\sqrt{3}}^{(16\sqrt{3}}=\frac{1\cdot 24}{2}=12\;\; cm
cum calculam distanta de la un punct la un plan

c)masura unghiului diedru format de planele (PBC)si(ABC)
Calculam mai intai intersectia celor doua plane:
(PBC)\cap (ABC)=BC
Astfel construim perpendicularele din P pe BC si din A pe BC
Astfel fie PD\perp BC
Si Ad\perp BC
Astfel avem unghiul m\left(\widehat{(PBC),(ABC)}\right)=m\left(\widehat{PD, AD}\right)=m\left(\widehat{PDA}\right)=

Cum triunghiul PAD este dreptunghic aplicam functiile trigonemetrice pentru a afla masura unghiului.
Astfel \sin\widehat{PDA}=\frac{PA}{PD}=\frac{8\sqrt{3}}{16\sqrt{3}}^{(8\sqrt{3}}=\frac{1}{2}=30^{0}
Deci masura unghiului dintre cele doua plane este de 30 de grade.

cum calculam masura unghiului a doua plane

Probleme rezolvate cu unghiul diedru

Prezentam inca doua probleme in care calculam unghiul diedru a doua semiplane, pentru cei care nu va mai reamintiti cum se face dati click aici.

1.SABCD este piramida regulata cu varful in S si cu toate muchiile congruente.Determinati masura unghiului diedru format de semiplanele:

a) (ABS) si (ABD) ;

Mai intai aflam intersectia semiplanelor:

(ABS)\cap (ABD)=AB, adica muchia diedrului

cum calculam unghiul diedru

 

Fie O centrul bazei , iar N mijlocul segmentului AB, adica [AN]\equiv[NB], deoarece ABCD patrat  si AB=l , atunci AC=l\sqrt{2}

Observam ca triunghiul SAB este echilateral, deci rezulta ca SN\perp AB, SM\subset(SAB), ON\perp AB si ON\subset (ABD), deci

m\left(\widehat{(SAB),(ABD)}\right)=m\left(\widehat{SN, NO}\right)=m\left(\widehat{SNO}\right)

Cum triunghiul SON este dreptunghic in O, putem aplica functiile trigonometrice, dar mai intai aflam SM=\frac{l\sqrt{3}}{2} (inaltime in triunghiul echilateral SAB) OM=\frac{l}{2}(apotema bazei in piramida SABCD)

Si cu Teorema lui Pitagora aflam SO^{2}=SM^{2}-OM^{2}\Rightarrow SO^{2}=\left(\frac{l\sqrt{3}}{2}\right)^{2}-\left(\frac{l}{2}\right)^{2}\Rightarrow SO^{2}=\frac{3l^{2}}{4}-\frac{l^{2}}{4}\Rightarrow SO=\sqrt{\frac{2l^{2}}{4}}=\frac{l\sqrt{2}}{2}

Astfel, calculam \sin\widehat{SNO}=\frac{SO}{SN}=\frac{\frac{l\sqrt{2}}{2}}{\frac{l\sqrt{3}}{2}}=\frac{l\sqrt{2}}{2}\cdot\frac{2}{l\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}

b) (BCS) si (BCA);

Observam ca: (BCS)\cap(BCA)=BC

La fel si mai sus triunghiul, in triunghiul SBC, ducem SM\perp BC, SM\subset(SBC),dar si OM\perp BC, OM\subset\left(BCA\right), astfel obtinem ca si mai sus m\left(\widehat{(BCS (BCA)}\right)=m\left(\widehat{SM,MO}\right)=m\left(\widehat{SMO}\right)

Dar la fel ca si mai sus triunghiul SMO este dreptunghic in O si obtinem
\sin\widehat{SMO}=\frac{SO}{SM}=\frac{\sqrt{6}}{3}

c)(SBA) si (SBC); (SBA)\cap(SBC)=SB

Astfel intersectia semiplanelor este dreapta SB, astfel ducem perpendiculara din A pe SB si din C pe SB.
cum calculam unghiul diedru a doua semiplane
Astfel avem AT\perp SB , AT\subset(SBA)
Dar si CT\perp SC, CT\subset(SBC)
Decin obtinem unghiul m\left(\widehat{(SBA),(SBC)}\right)=m\left(\widehat{AT,CT}\right)=m\left(\widehat{ATC}\right)
Stim ca AT si CT sunt inaltimii in triunghiurile echilaterale SBA si SBC, astfel obtinem CT=AT=\frac{l\sqrt{3}}{2}, deci obtinem triunghiul ATC isoscel.

Pentru a afla masura unghiului construim perpendiculara din T pe AC si cu teorema lui Pitagora aflam TO^{2}=TA^{2}-AO^{2}\Rightarrow TO^{2}=\frac{3l^{2}}{4}-\frac{2l^{2}}{4}\Rightarrow TO=\sqrt{\frac{l^{2}}{4}}=\frac{l}{2}
Acum construim si perpendiculara din A pe CT, adica AE, astfel pentru a afla AE stim ca: A_{\Delta TAC}=A_{\Delta CTA}\Rightarrow \frac{AC\cdot TO}{2}=\frac{CT\cdot AE}{2}\Rightarrow \frac{l}{2}\cdot \frac{l}{2}=\frac{l\sqrt{3}}{2}\cdot AE\Rightarrow \frac{l^{2}}{4}:\frac{l\sqrt{3}}{2}=AE\Rightarrow AE=\frac{l^{2}}{4}\cdot\frac{2}{l\sqrt{3}}=\frac{l}{2}\cdot\frac{1}{\sqrt{3}}=\frac{l\sqrt{3}}{6}

Astfel, daca aplicam functiile trigonometrice obtinem \sin\widehat{ATC}=\frac{AE}{AT}=
\frac{l\sqrt{3}}{6}\cdot\frac{2}{l\sqrt{6}}=
\frac{1\cdot 1}{3}\cdot\frac{1}{\sqrt{3}}=
\frac{\sqrt{3}}{9}
cum calculam unghiul diedru a doua semiplane

d) (SAB) si (SAD).
La fel obtinem si pentru unghiul de mai sus.

O piramida triunghiulara regulata are inaltimea de trei cm si latura bazei de 4 cm . Calculeaza aria unei fete laterale si masura diedrului format de o fata cu planul bazei.

Demonstratie:
Stim ca in VABC VO inaltime, adica VO=3 cm si AB=4 cm
Stim ca fetele laterale sunt triunghiuri isoscele, deci in triunghiul VBC construim perpendiculara VM, adica inaltimea in triunghiul isoscel VAC, stim ca VO=3 cm si a_{b}=OM=\frac{l\sqrt{3}}{6}=\frac{4\sqrt{3}}{6}=\frac{2\sqrt{3}}{3}

Astfel in triunghiul dreptunghic VOM aplicam Teorema lui Pitagora,
VM^{2}=VO^{2}+OM^{2}\Rightarrow VM^{2}=3^{2}+\frac{4\cdot 3}{9}\Rightarrow VM=\sqrt{9+\frac{4}{3}}\Rightarrow VM=\sqrt{\frac{27+4}{3}}=\sqrt{\frac{31}{3}}=\frac{\sqrt{31\cdot 3}}{3}=\frac{\sqrt{93}}{3}.

Astfel aria A_{\Delta VBC}=\frac{BC\cdot VM}{2}=\frac{4\cdot\frac{\sqrt{93}}{3}}{2}=2\cdot\frac{\sqrt{93}}{3}=\frac{2\sqrt{93}}{3}\;\; cm^{2}

Dar avem si sa calculam m\left(\widehat{(VBC),(ABC)}\right)
(VBC)\cap (ABC)=BC
Deci ducem perpendicularele din V pe BC si din A pe BC si obtinem: VM\perp BC, VM\subset (VBC)
Dar si AM\perp BC, AM\subset(ABC)
Si obtinem unghiul m\left(\widehat{VM, AM}\right)=m\left(\widehat{VMA}\right)=m\left(\widehat{VMO}\right)
Stim ca OM=\frac{2\sqrt{3}}{3}

Deci putem aplica \tan\widehat{VMO}=\frac{VO}{OM}=\frac{3}{\frac{2\sqrt{3}}{3}}=3:\frac{2\sqrt{3}}{3}=3\cdot\frac{3}{2\sqrt{3}}=\frac{9\sqrt{3}}{2\cdot 3}=\frac{3\sqrt{3}}{2}
unghiul a doua plane