Marimi invers proportionale

Marimile direct proportionale, dar si marimile invers proportionale joaca un rol important in in viata de zi cu zi. Despre marimi direct proportionale am mai vorbit, pentu cei care nu isi mai amintesc click aici.

Astfel acum definim notiunea de marimi invers proportionale:

Definitie: doua marimi se numesc invers proportionale, daca atunci cand una creste (scade) de un numar de ori, atunci cealalta se micsoreaza (creste) de acelasi numar de ori.

Exemplu:
Numarul de muncitori si numarul de zile in care finalizeaza lucrarea.
astfel avem:
Numaru muncitori                                      Numar zile
8                                                                      6
16                                                                    3
4                                                                    12

Din tabelul de mai sus avem ca
\frac{8}{16}=\frac{3}{6}; \frac{16}{4}=\frac{12}{3}; \frac{8}{4}=\frac{12}{6}
cu ajutorul exemplului de mai sus obtinem:

Proprietatile marimilor invers proportionale:

Raportul a doua valori din prima marime este egala cu inversul raportului valorilor corespunzatoare din cealalta marime.

Produsul valorilor corespunzatoare din cele doua marimi este constant.

Definitie: Fiind date doua multimi

A=\left\{a_{1}, a_{2},...,a_{n}\right\} si B=\left\{b_{1}, b_{2},...,b_{n}\right\}, spunem ca intele elementele acestor multimi exista o dependenta invers proportionala (adica sunt invers proportionale), daca \frac{a_{1}}{\frac{1}{b_{1}}}=\frac{a_{2}}{\frac{1}{b_{2}}}=...=\frac{a_{n}}{\frac{1}{b_{n}}} sau a_{1}\cdot b_{1}=a_{2}\cdot b_{2}=...=a_{n}\cdot b_{n}.

Aplicatii:

1. Aflati numerele rationale pozitive a, b, c invers proportionale cu 1, \frac{1}{2}, \frac{1}{3} daca

10ab-10ac-bc=1,76

Solutie: Numerele \left\{a, b, c\right\} invers proportionale cu \left\{1, \frac{1}{2}, \frac{1}{3}\right\}, daca \frac{a}{\frac{1}{1}}=\frac{b}{\frac{1}{\frac{1}{2}}}=\frac{c}{\frac{1}{\frac{1}{3}}}=k

Ca sa ne fie mai usor le-am egalat cu k, si obtinem:

\frac{a}{\frac{1}{1}}=k\Rightarrow a=1\cdot k=k

Astfel obtinem si \frac{b}{\frac{1}{\frac{1}{2}}}=k\Rightarrow b=\frac{1}{\frac{1}{2}}\cdot k=2\cdot k

Dar si \frac{c}{\frac{1}{\frac{1}{3}}}=k\Rightarrow c=\frac{1}{\frac{1}{3}}\cdot k=3\cdot k

Mai stim si ca 10\cdot k\cdot 2k+10\cdot k\cdot 3k-2k\cdot 3k=1,76\Rightarrow 20k^{2}+30k^{2}-6k^{2}=1,76\Rightarrow 44k^{2}=1,76\Rightarrow k^{2}=1,76:44\Rightarrow k^{2}=0,04\Rightarrow k^{2}=\left(0,2\right)^{2}\Rightarrow k=0,2. Astfel obtinem : a=0,2

Acum aflam b=2\cdot k=2\cdot 0,2=0,4

Si c=3\cdot k=3\cdot 0,2=0,6

Asadar este foarte important sa intelegem notiunea de marime invers proportionala, cat si marimi direct proportionale, notiuni care sunt folositoare si in rezolvarea problemelor dein viata de zi cu zi.

Cum demonstram ca un patrulater este paralelogram

Prezentam o problema pe care o rezolvam folosind notiunile invatate pana in acest moment, adica notiunea de patrulater convex, cum aflam masura unghiurilor intr-un patrulater convex, cum aratam ca un triunghi este triunghi isoscel, dar si cum aratam ca un patrulater este paralelogram. Adica cum demonstram ca un patrulater este paralelogram.

 

În patrulaterul convex ABCD măsurile unghiurilor A, B, C, D, sunt direct proporționale cu numerele 2,4,6 și 8.
a) Calculați măsurile unghiurilor patrulaterului ABCD
b) Fie [DE bisectoarea unghiului ADC, E € (AB).  Arătați că triunghiul ADE este isoscel.
c) Demonstrați că BCDE este paralelogram.

Demonstratie:

a) Pentru a afla masurile unghiurilor patrulaterului trebuie sa ne reamintim notiunea de marime direct proportionala, iar cei care nu va mai reamintiti click aici.

Astfel obtinem sirul de rapoarte:

\frac{m\left(\widehat{A}\right)}{2}= \frac{m\left(\widehat{B}\right)}{4}= \frac{m\left(\widehat{C}\right)}{6}= \frac{m\left(\widehat{A}\right)}{8}

Acum daca egalam fiecare raport cu o litera k obtinem:

\frac{m\left(\widehat{A}\right)}{2}=k\Rightarrow m\left(\widehat{A}\right)=2k

\frac{m\left(\widehat{B}\right)}{4}=k\Rightarrow m\left(\widehat{B}\right)=4k

\frac{m\left(\widehat{C}\right)}{6}=k\Rightarrow m\left(\widehat{C}\right)=6k

\frac{m\left(\widehat{D}\right)}{8}=k\Rightarrow m\left(\widehat{D}\right)=8k

Dar stim ca intr-un patrulater convex suma masurii unghiurilor este de 360^{0}

Astfel stim ca m\left(\widehat{A}\right)+m\left(\widehat{B}\right)+m\left(\widehat{C}\right)+m\left(\widehat{D}\right)=360^{0}\Rightarrow    2k+4k+6k+8k=360^{0}\Rightarrow 20k=360^{0}\Rightarrow k=360^{2}:20\Rightarrow k=18^{0}

Si astfel obtinem m\left(\widehat{A}\right)=2\cdot k=2\cdot 18^{0}=36^{0}

Iar m\left(\widehat{B}\right)=4\cdot k=4\cdot 18^{0}=72^{0}

Si m\left(\widehat{C}\right)=6\cdot k=6\cdot 18^{0}=108^{0}

Dar si m\left(\widehat{D}\right)=8\cdot k=8\cdot 18^{0}=144^{0}

unghiurile intr-un patrulater convex

Deci am aflat suma masurii unghiurilor patrulaterului.

Important ! Pentru a afla masura unghiurilor patrulaterului trebuie sa stim care este suma masurii unghiurilor intr-un patrulater.

b) Stim ca [DE este bisectoarea unghiului ADC, dar pentru a trasa in figura noastra bisectoarea sa ne reamintim mai intai ce inseamna bisectoarea intr-un unghi.

Definitie:

Semidreapta care imparte unghiul dat in doua unghiuri congrunete se numeste bisectoarea unui unghi.

Deci noi stim ca semidreapta [DE este bisectoarea unghiului ADC, dar cum din punctul anterior stim masura unghiului ADC, putem sa aflam si masura unghiului ADE, dar si masura unghiului EDC, astfel avem m\left(\widehat{ADE}\right)=m\left(\widehat{EDC}\right)=\frac{m\left(\widehat{ADC}\right)}{2}=\frac{144^{0}}{2}=72^{0}

Deci am aflat ca fiecare din unghiuri are masura de 72^{0}.

cum aratam ca un triunghi este isoscel

Observam ca ADE triunghi, dar din notiunile invatate in anii anteriori stim ca suma masurii unghiurilor intr-un triunghi este de 180^{0}

Deci in triunghiul ADE, avem: m\left(\widehat{DAE}\right)+m\left(\widehat{ADE}\right)+m\left(\widehat{AED}\right)=180^{0}\Rightarrow 36^{0}+72^{0}+m\left(\widehat{AED}\right)=180^{0}\Rightarrow 108^{0}+m\left(\widehat{AED}\right)=180^{0}\Rightarrow m\left(\widehat{AED}\right)=180^{0}-108^{0}\Rightarrow m\left(\widehat{AED}\right)=72^{2}

deci in triunghiul ADE, stim ca m\left(\widehat{AED}\right)=m\left(\widehat{ADE}\right)=72^{0}\Rightarrow \widehat{AED}\equiv\widehat{ADE}

Dar cu proprietatile de la triunghiul isoscel, stim ca:

-Daca intr-un triunghi unghiurile alaturate bazei sunt congruente, atunci triunghiul este isoscel.

Deci cum am aratat ca cele doua unghiuri sunt congrunete, rezulta ca triunghiul este isoscel, adica \Delta ADE isoscel,

cum sunt unghiurile intr-un triunghi isoscel

 

 

 

 

 

 

 

c) Acum sa demonstram ca BCDE este paralelogram

Observam ca in patrulaterul convex BCDE

m\left(\widehat{EDC}\right)=m\left(\widehat{EBC}\right)=72^{0}

Observam ca unghiul AEB este un unghi alungit, adica:

Stim ca m\left(\widehat{AEB}\right)=180^{0}\Rightarrow m\left(\widehat{AED}\right)+m\left(\widehat{DEB}\right)=180^{0}\Rightarrow 72^{0}+m\left(\widehat{DEB}\right)=180^{0}\Rightarrow m\left(\widehat{DEB}\right)=180^{0}-72^{0}\Rightarrow m\left(\widehat{DEB}\right)=108^{0}.

deci cu masura unghiului gasit obtinem ca m\left(\widehat{DEB}\right)=m\left(\widehat{DCB}\right)=108^{0}\Rightarrow \widehat{DEB}\equiv\widehat{DCB}

Si cu teorema reciproca  referitoare la unghiuri intr-un paralelogram obtinem ca BCDE este paralelogram.

Stim ca daca intr-un patrulater convex unghiurile opuse sunt congruente, atunci patrulaterul este paralelogram.

 Aceasta a fost o problema rezolvata prin care am invatat cum demonstram ca un patrulater este paralelogram. Daca aveti probleme asemanatoare urmati tiparul de mai sus si cu siguranta le puteti rezolva.

Marimi direct proportionale

Dupa ce vi s-au introdus notiunile de raport si proportie, azi o sa discutam despre marimi direct proportionale.

Cum si la ce ne ajuta aceste marimi direct proportionale?

Raspunsul o sa-l  aflam pe parcursul acestui articol, dar mai intai definim notiunea de marime direct proportionala:

Definitie. Doua marimi se numesc direct proportionale, daca depind una de cealalta , astfel incat daca una creste de un numar de ori, atunci si marimea celeilalte creste de acelasi numar de ori.

Exemplu:

1 Kg de fructe costa 2 lei, atunci 2 Kg costa de doua ori mai mult, 3 Kg costa de trei ori mai mult.

Astfel intre cantitati si cost exista o relatie de directa proportionalitate.

1 Kg=2 lei

2 Kg= 4 lei

3 Kg=6 lei

Observati ca cu cat Kg cresc, creste si costul.

Matematic scriem:

Multimea ordonata (a_{1}, a_{2},...a_{n}) este direct proportionala cu multimea (b_{1}, b_{2},...b_{n}) daca si numai daca

\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=...=\frac{a_{p}}{b_{p}}

Valoarea comuna a acestor rapoarte se numeste coeficient de proportionalitate si se noteaza de regula cu k, unde k\neq 0

Aplicatii:

1. Numerele x+y, y+z si z+x sunt direct proportionale cu 3, 4 si 5.

Aflati valoarea raportului \frac{3xy+4yz+5zx}{x^{2}+y^{2}+z^{2}}, unde x, y, z\in Q_{+}

Solutie:

Stim ca numerele x+y, y+z si z+x sunt direct proportionale cu 3, 4 si 5, astfel obtinem:

\frac{x+y}{3}=\frac{y+z}{4}=\frac{z+x}{5}

Iar valorea comuna a acestor rapoarte o notam cu k , astfel obtinem:

\frac{x+y}{3}=k\Rightarrow x+y=3k

\frac{y+z}{4}=k\Rightarrow y+z=4k

\frac{z+x}{5}=k\Rightarrow z+x=5k

Astfel daca adunam cele trei relatii de mai sus obtinem

 

x+y+y+z+z+x=3k+4k+5k\Rightarrow 2x+2y+2z=12k\Rightarrow 2\left(x+y+z\right)=12k\Rightarrow x+y+z=12k:2\Rightarrow x+y+z=6k

Astfel stim ca

x+y=3k, dar si x+y+z=6k, deci obtinem 3k+z=6k\Rightarrow z=6k-3k\Rightarrow z=3k

Dar si

y+z=4k si x+y+z=6k\Rightarrow x+4k=6k\Rightarrow x=6k-4k\Rightarrow x=2k

Si nu in ultimul rand z+x=5k si x+y+z=6k\Rightarrow x+z+y=6k\Rightarrow 5k+y=6k\Rightarrow y=6k-5k\Rightarrow y=k

 

Din ipoteza mai stim ca \frac{3xy+4yz+5zx}{x^{2}+y^{2}+z^{2}}=\frac{3\cdot 2k\cdot k+4\cdot k\cdot 3k+5\cdot 3k\cdot 2k}{\left(2k\right)^{2}+k^{2}+\left(3k\right)^{2}}=\frac{6k^{2}+12k^{2}+30k^{2}}{4k^{2}+k^{2}+9k^{2}}=\frac{48k^{2}}{14k^{2}}^{(k^{2}}=\frac{48}{14}^{(2}=\frac{24}{7}

Observati ca la exercitiul de mai sus am folosit pentru inceput definitia pe care am enuntat-o la inceputul articolului, definitia marimilor direct proportionale. Am egalat fiecare raport cu k si asa am aflat cele trei relatii pe care le-am adunat, dupa care am dat factor comun pe 2 si am simplificat, de unde am obtinut ca suma celor trei numere este 6k. Si astfel cu ajutorul acestei relatii am putut afla fiecare numar, dar si valoarea raportului.

Asadar marimile direct proportionale ne ajuta sa gasim mai repede pretul unui produs si nu numai, daca ii dublam sau ii triplam cantitatea, in viata de zi cu zi sa aflam mai repede pretul unei cantitati mai mari la un produs. Observati exemplul pe care l-am dat mai sus.

Astfel este important sa tinem minte ca doua marimi se numesc direct proportionale, daca depind una de cealalta, astfel incat daca una creste atunci si cealalta creste sau daca una scade atunci si cealalta scade.