Probleme rezolvate recapitulare clasa a 8 a Partea 2

Partea a doua

probleme rezolvate pentru clasa a viii a

 

1. b)Cum rezolvam in multimea numerelor reale ecuatia?
\frac{\left(x-2\right)^{2}}{2}+{2)}^x\left(x-1\right)=\frac{3x\left(x-5\right)}{2}+^{2)}12
Mai intai aducem in ambii membrii la acelasi numitor, astfel ecuatia devine:
\frac{\left(x-2\right)^{2}+2x\left(x-1\right)}{2}=\frac{3x\left(x-5\right)+2\cdot 12}{2}
Cum avem acelasi numitor putem egala numaratorii, astel ecuatia devine:
\left(x-2\right)^{2}+2x\left(x-1\right)=3x\left(x-5\right)+24\Rightarrow x^{2}-4x+4+2x^{2}-2x=3x^{2}-15x+24\Rightarrow 3x^{2}-6x+4=3x^{2}-15x+24\Rightarrow 3x^{2}-3x^{2}-6x+15x=24-4\Rightarrow 9x=20\Rightarrow x=\frac{20}{9}
Apoi doar am aplicat formulele de calcul prescurtat si am efectuat calculele, de unde am obtinut solutia ecuatiei x=\frac{20}{9}

3. In cazul acestei probleme avem un triunghi dreptunghic in care stim doar mediana si cosinusul unui unghi, astfel cu teorema medianei stim ca

cum aflam inaltimea intr-un triunghi dreptunghic problema rezolvata cu teorema lui Pitagora

 

AM=\frac{1}{2}\cdot BC\Rightarrow 6\sqrt{3}=\frac{1}{2}\cdot BC\Rightarrow BC=12\sqrt{3}

Cum stim ipotenuza triunghiului dreptunghic putem sa aflam o cateta deoarece:

\cos B=\frac{cateta\;\; alaturata}{ipotenuza}\Rightarrow \frac{1}{2}=\frac{AB}{BC}\Rightarrow \frac{1}{2}=\frac{AB}{12\sqrt{3}}\Rightarrow AB=\frac{12\sqrt{3}}{2}=6\sqrt{3}\;\; cm^{2}

Cum stim o cateta si ipotenuza putem sa aflam cu teorema lui Pitagora cealalta cateta:

AC^{2}=BC^{2}-AB^{2}\Rightarrow AC^{2}=\left(12\sqrt{3}\right)^{2}-\left(6\sqrt{3}\right)^{2}\Rightarrow AC^{2}=144\cot 3-36\cdot 3\Rightarrow AC^{2}=432-108\Rightarrow AB=\sqrt{324}=18\;\; cm

Deci putem afla perimetrul

P_{\Delta ABC}=AB+AC+BC=18\sqrt{3}+18

b) Ca sa aflam aria unui triunghi dreptunghic stim ca

A_{\Delta ABC}=\frac{c_{1}\cdot c_{2}}{2}=\frac{AB\cdot AC}{2}=\frac{18\cdot 6\sqrt{3}}{2}=\frac{9\cdot 6\sqrt{3}}{1}=54\sqrt{3}\;\; cm^{2}

c) Acum ca sa aflam cat la suta din aria triunghiului ADC reprezinta ABD, mai intai afla aria ficarui triunghi, dar mai intai inatimea triunghiului ABC

h=\frac{c_{1}\cdot c_{2}}{ipotenuza}=\frac{AB\cdot AC}{BC}=\frac{18\cdot 6\sqrt{3}}{12\sqrt{3}}=\frac{18\cdot 1}{2}=9

si cu inaltimea triunghiului ABC o stim AD=9, stim ca avem doua triunghiuri dreotunghice deci putem aplica formula

A_{\Delta ABD}=\frac{BD\cdot AD}{2}=\frac{3\sqrt{3}\cdot 9}{2}

Ca sa aflam BD stim ca \cos B=\frac{1}{2}, deci masura unghiului B este de 60 de grade si unghiul C este de 30 de grade.

Stim ca triunghiul ABM este isoscel cu un unghi de 60 de grade deci echilateral, deci si masura unghiului AMB este de 60 e grade

Astel in triunghiul

ADM stim ca m\left(\widehat{D}\right)=90^{0}

Deci obtinem ca

m\left(\widehat{DAM}\right)=30^{0}

deci in triunghiul ADM dreptunghic in D, aplicam teorema 30-60-90

DM=\frac{1}{2}\cdot AM=\frac{1}{2}\cdot 6\sqrt{3}=3\sqrt{3}

Astfel BD=BM-DM=6\sqrt{3}-3\sqrt{3}=3\sqrt{3}

Iar DC=DM+MC=3\sqrt{3}+6\sqrt{3}=9\sqrt{3}\;\; cm

deci acum putem afla aria fiecarui triunghi

A_{\Delta ABD}=\frac{BD\cdot AD}{2}=\frac{3\sqrt{3}\cdot 9}{2}=\frac{27\sqrt{3}}{2}

Dar si

A_{\Delta ADC}=\frac{AD\cdot DC}{2}=\frac{9\cdot 9\sqrt{3}}{2}=\frac{81\sqrt{3}}{2}

Iar acum trebuie sa aflam

p\% A_{\Delta ABD}=A_{\Delta ADC}\Rightarrow p\% \frac{27\sqrt{3}}{2}=\frac{81\sqrt{3}}{2}\Rightarrow p\%27\sqrt{3}=81\sqrt{3}\Rightarrow p\%=\frac{81\sqrt{3}}{27\sqrt{3}}=\frac{3}{1}\Rightarrow p=3\%

Rezolvarea triunghiului dreptunghic cu functiile trigonometrice

Dupa ca am invatat sa aplicam Teorema lui Pitagora, adica sa rezolvam triunghiul dreptunghic cu ajutorul Teoremei lui Pitagora, Teoremei inaltimii, Teoremei catetei, a venit vremea sa invatam sa rezolvam Triunghiul dreptunghic cu ajutorul functiilor trigonometrice.

Astfel, pentru orice triunghi dreptunghic se definesc rapoartele sinus, cosinus, tangenta si cotangenta numite functiile trigonometrice.

cum aplicam functiile trigonometrice

Acum definim functia sinus pentru unghiul x ca fiind \sin x^{0}=\frac{cateta. opusa}{ipotenuza}=\frac{AC}{BC}

Functia cosinusului: \cos x^{0}=\frac{cateta, alaturata}{ipotenuza}=\frac{AB}{BC}

Functia tangenta \tan x^{0}=\frac{cateta. opusa}{cateta. alaturata}=\frac{AC}{AB}

Functia cotangenta x^{0}=\frac{cateta alaturata}{cateta. opusa}=\frac{AB}{AC}

Se observa ca \tan x^{0}=\frac{\sin x^{0}}{\cos x^{0}} dar si  functia cotangenta x^{0}=\frac{cos x^{0}}{\sin x^{0}} dar si

\sin^{2} x^{0}+\cos^{2} x^{0}=1

Important cand aplicam functiile trigonometrice este sa avem triunghi dreptunghic, deci functiile trigonometrice se aplica in triunghiurile dreptunghice.

Exemplu:

In triunghiul ABC m\left(\widehat{A}\right)=75^{0} si m\left(\widehat{B}\right)=60^{0}. Daca Ac=5\sqrt{6}, calculati perimetrul triunghiului ABC.

Demonstratie:

Observam ca triunghiul nu este dreptunghic, dar putem afla si masura unghiului C astfel:

m\left(\widehat{A}\right)+m\left(\widehat{B}\right)+m\left(\widehat{C}\right)=180^{0}\Rightarrow
75^{0}+60^{0}+m\left(\widehat{C}\right)=180^{0}\Rightarrow m\left(\widehat{C}\right)=180^{0}-135^{0}\Rightarrow m\left(\widehat{C}\right)=45^{0}

Acum construim perpendiculara din
cum aflam perimetrul unui triunghi
A pe BC, astfel obtinem doua triunghiuri dreptunghice, fie Ad\perp BC

Acum in triunghiul ACD aplicam cosinusul unghiului de 45 de grade

\cos 45^{0}=\frac{cateta.alaturata}{ipotenuza}\Rightarrow \frac{\sqrt{2}}{2}=\frac{CD}{AC}\Rightarrow \frac{\sqrt{2}}{2}=\frac{CD}{5\sqrt{6}}\Rightarrow CD=\frac{5\sqrt{6}\cdot \sqrt{2}}{2}=\frac{5\cdot 2\sqrt{3}}{2}=5\sqrt{3}

Observam ca masura unghiului C este de 45 de grade, masura unghiului D este de 90 de grade si astfel gasim si ca m\left(\widehat{CAD}\right)=45^{0}

Si astfel triunghiul ACD este dreptunghic isoscel , deci CD=AD=5\sqrt{3}

Acum, daca in triunghiul ADC aplicam sinusul unghiului B obtinem

\sin B=\frac{cateta. opusa}{ipotenuza}\Rightarrow \sin 60^{0}=\frac{AD}{AB}\Rightarrow \frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{AB}\Rightarrow AB=\frac{10\sqrt{3}}{\sqrt{3}}=10
Acum daca aplicam \cos 60^{0}=\frac{BD}{AB}\Rightarrow \frac{1}{2}=\frac{BD}{10}\Rightarrow BD=5\;\;cm

Deci BC=BD+DC=5\sqrt{3}+5

Astfel perimetrul triunghiului ABC este P_{\Delta ABC}=AB+AC+BC=10+5\sqrt{6}+5\sqrt{3}+5=15+5\sqrt{6}+5\sqrt{3}=5\left(3+\sqrt{6}+\sqrt{3}\right)

Deci daca nu avem triunghi dreptunghic construim perpendiculara dintr-un varf al unghiului pe latura opusa unghiului.

Fie triunghiul ABC dreptunghic in A.Daca BC =25 cm si sin B +sin C=1,4, aflati perimetrul triunghiului;

Demonstratie:
In triunghiul ABC aplicam
\sin B=\frac{AC}{BC}=\frac{AC}{25}
Dar si \sin C=\frac{AB}{BC}=\frac{AB}{25}
Acum daca inlocuim in relatia de mai sus avem
\sin B+\sin C=1,4\Rightarrow \frac{AC}{25}+\frac{AB}{25}=1,4\Rightarrow \frac{AB+AC}{25}=1,4\Rightarrow AB+AC=25\cdot 1,4\Rightarrow AB+AC=35(1)
Acum, daca in triunghiul ABC aplicam Teorema lui Pitagora obtinem
AB^{2}+AC^{2}=BC^{2}\Rightarrow 25^{2}=\left(AB+AC\right)^{2}-2\cdot AB\cdot AC\Rightarrow 625=1125-2\cdot AB\cdot AC\Rightarrow 625-1125=-2\cdot AC\cdot AB\Rightarrow -2\cdot AB\cdot AC=-600\Rightarrow AB\cdot AC= 300\Rightarrow
Acum, daca scoatem din relaia (1) AB obtinem AB=35-AC si inlocuim in relatia de mai sus avem
AB\cdot AC=250\Rightarrow \left(35-AC\right)\cdot AC=300\Rightarrow 35\cdot AC-AC^{2}=300\Rightarrow -AC^{2}+35\cdot AC-300=0|\cdot \left(-1\right)\Rightarrow AC^{2}-35\cdot AC+300=0\Rightarrow AC^{2}-20\cdot AC-15\cdot AC+300=0\Rightarrow AC\left(AC-20\right)-15\left(AC-20\right)=0\Rightarrow \left(AC-20\right)\left(AC-15\right)=0
Deci gasim o data ca AC-20=0\Rightarrow AC=20 sau AC-15=0\Rightarrow AC=15
Acum aflam AB, astfel AB=35-AC\Rightarrow AB=35-15=20

Sau AB=35-AC=35-20=15
Acum daca efectuam proba obtinem
\sin B+\sin C=1,4\Rightarrow \frac{AC}{25}+\frac{AB}{25}=\frac{AB+AC}{25}=\frac{15+20}{25}=\frac{35}{25}=1,4
Deci se verifica.
Acum daca aplicam si Teorema lui Pitagora obtinem
AB^{2}+AC^{2}=25^{2}\Rightarrow 15^{2}+20^{2}=225+400=625
Deci se verifica.
Si astfel gasim ca perimetrul triunghiului este P_{\Delta ABC}=AB+AC+BC=15+20+25=60
Deci AB=20 si AC=15
Sau AB=15 si AC=20

Cum aflam linia mijlocie intr-un trapez dreptunghic

Sa vedem cum putem afla linia mijlocie intr-un trapez, trapez dreptunghic !

In trapezul dreptunghic ABCD,AB perpendicular pe CD, m\left(\widehat{B}\right)=m\left(\widehat{C}\right)=90^{0} se stie ca DB este bisectoarea unghiului D si DB=12\sqrt{3} cm. Daca m\left(\widehat{A}\right)= 120^{0} sa se afle lungimea liniei mijlocii.

Demonstratie:

Stim ca \prec{A}=120^{0}, dar si \prec{B}\equiv\prec{C}=90^{0}

Deci m\left(\widehat{ADC}\right)=360^{0}-120^{0}-180^{0}=240^{0}-180^{0}=60^{0}

Cum DB este bisectoarea unghiului D gasim ca

m\left(\widehat{ADB}\right)=m\left(\widehat{BDC}\right)=\frac{60^{0}}{2}=30^{0}

Cum triunghiul BCD este dreptunghic putem aplica:

Teorema 30^{0}-60^{0}-90^{0}

Astfel BC=\frac{BD}{2}=\frac{12\sqrt{3}}{2}=6\sqrt{3}\;\; cm

Acum construim perpendiculara din A pe CD, astfel obtinem ABCT dreptunghi, deci AT=6\sqrt{3}

Acum cu Teorema lui Pitagora in triunghiul BDC obtinem:

BD^{2}=BC^{2}+CD^{2}\Rightarrow CD^{2}=\left(12\sqrt{3}\right)^{2}-\left(6\sqrt{3}\right)^{2}\Rightarrow CD=\sqrt{432-108}=\sqrt{324}=18\;\; cm

Daca in triunghiul ATD aplicam tangenta de 60 de grade obtinem:

\tan ADT=\frac{AT}{TD}\Rightarrow \tan 60^{0}=\frac{6\sqrt{3}}{TD}\Rightarrow \sqrt{3}=\frac{6\sqrt{3}}{TD}\Rightarrow TD=\frac{6\sqrt{3}}{\sqrt{3}}=6 cm Cum stim TD, putem afla CT=18-6=12 cm.

Dar ABCT dreptunghi si astfel gasim si ca AB=CT=12 cm.

Observam ca in triunghiul ADB m\left(\widehat{BAD}\right)=120^{0}, dar si ca m\left(\widehat{ADB}\right)=30^{0}, deci m\left(\widehat{ABD}\right)=30^{0} si astfel gasim ca triunghiul ABD isoscel, adica AB=AD=CT=12 cm.

Astfel construim perpendiculara din A pe BD, fie AO\perp BD, astfel in triunghiul ABO dreptunghic in O aplicam Teorema 30^{0}-60^{0}-90^{0}

AO=\frac{AB}{2}=\frac{12}{2}=6 cm

Cum stim bazele trapezului putem afla linia mijlocie a trapezului.

 

cum aflam linia mijlocie intrun trapez

MN=\frac{AB+CD}{2}=\frac{12+6}{2}=\frac{18}{2}=9\;\; cm

Simulare Bacalaureat 2014 clasa a XI-a matematica

Prezentam o simulare bacalaureat 2014 clasa a XI-a la matematica subiectul I.
Dupa cum bine stiti inca din calsa a X-a ecuatiile exponentiale joaca un rol important si se pune accent pe ele cand se realizeaza subiectele la bacalaureat.

Subiecte simulare bacalaureat 2014

1) Sa se rezolve ecuatia
3^{x}+2\cdot 3^{x+1}=7
2) Sa se determine toate valorile reale ale lui x pentru care x\left(x-1\right)\leq x+15.
3) Sa se determine valoarile reale ale numarului m, astfel incat reprezentarea grafica a functiei f:R\rightarrow R, f\left(x\right)=x^{2}-\left(m+1\right)x-m sa fie tangenta la axa Ox.
4) Sa se rezolve ecuatia \lg\left(x+4\right)+\lg\left(2x+3\right)=\lg\left(1-2x\right)
5) Sa se calculeze cosinusul unghiului ascutit format de diagonalele dreptunghiului ABCD stiind ca AB=16 cm, si BC=12 cm.
6) Se considera triunghiul echilateral ABC de centru O. Daca punctul M este mijlocul segmentului BC, sa se determine numarul real astfel incat \vec{AO}=a\cdot\vec{AM}.
Solutie
1) Ca sa rezolvam ecuatia de mai sus mai intai observam ca ecuatia putem sa o scriem:
3^{x}+2\cdot 3^{x+1}=7\Rightarrow 3^{x}+2\cdot 3^{x}\cdot 3^{1}=7
Astfel daca notam cu
t=3^{x} si astfel ecuatia devine
t+2\cdot t\cdot 3=7\Rightarrow t+6t=7\Rightarrow 7t=7\Rightarrow t=1
Astfel stim ca
3^{x}=1\Rightarrow 3^{x}=3^{0}\Rightarrow x=0
2) Acum sa aflam valorile reale ale lui x care verifica inegalitatea
x\left(x-1\right)\leq x+15\Rightarrow x^{2}-x-x-15\leq 0\rightarrow x^{2}-2x-15\leq 0.
Acum calculam
\Delta=\left(-2\right)^{2}-4\cdot 1\cdot \left(-15\right)=4+60=64
Calculam acum
x_{1}=\frac{-b+\sqrt{64}}{2\cdot a}=\frac{2+8}{2}=\frac{10}{2}=5
x_{2}=\frac{2-\sqrt{64}}{2\cdot 1}=\frac{2-8}{2}=\frac{-6}{2}=-3
Acum sa efectuam tabelul de variatie
cum stabilim solutia unei inecuatii de gradul II
Deci solutia inecuatiei este intervalul \left[-3, 5\right]
3) Mai intai calculam valoarea minima a functiei V\left(\frac{-b}{2\cdot a}, 0\right)
Astfel avem ca
\frac{-b}{2\cdot a}=\frac{-\left[-\left(m-1\right)\right]}{2\cdot 1}=\frac{m-1}{2}
Astfel avem urmatoarea ecuatie :
x^{2}-\left(m+1\right)\cdot x-m=0
Conditia ca reprezentarea grafica sa fie tangenta la axa OX este ca \Delta =0
Astfel mai intai calculam Delta
\Delta =\left[-\left(m-1\right)\right]^{2}-4\cdot 1\cdot\left(-m\right)=\left(m-1\right)^{2}+4m
Acum avem conditia \Delta =0\Rightarrow\left(m-1\right)^{2}+4m=0
\Rightarrow m^{2}-2m+1+4m=0\Rightarrow m^{2}+2m+1=0\Rightarrow\left(m+1\right)^{2}=0
\Rightarrow m=-1
deci pentru m=-1 reprezentarea grafica este tangenta la axa Ox.
4) Pentru a rezolva ecuatia avem mai intai conditiile:
x+4>0\Rightarrow x>-4\;\; I_{1}=\left(-4, +\infty\right)  \\ 2x+3>0\Rightarrow x>\frac{-3}{2}\;\; I_{2}=\left(-\frac{3}{2}, +\infty\right)  \\1-2x>0\Rightarrow x<\frac{1}{2}\;\; I_{3}=\left(-\infty; \frac{1}{2}\right)
Acum I=I_{1}\cap I_{2}\cap I_{3}=\left(-4;\infty\right)\cap\left(-\frac{3}{2}; \infty\right)\cap\left(-\infty;\frac{1}{2}\right)=\left(-\frac{3}{2};\frac{1}{2}\right)
Astfel ecuatia devine:
\lg\left(x+4\right)\cdot\left(2x+3\right)=\lg\left(1-2x\right)\Rightarrow \left(x+4\right)\cdot\left(2x+3\right)=\left(1-2x\right)\Rightarrow 2x^{2}+3x+8x+12=1-2x\Rightarrow 2x^{2}+13x+11=0
Observam ca am obtinut o ecuatie de gradul II
Calculam
\Delta =13^{2}-4\cdot 2\cdot 11=169-88=81
Calculam acum
x_{1}=\frac{-13+9}{2\cdot 2}=\frac{-4}{4}=-1\in I
x_{2}=\frac{-13-9}{4}=\frac{-22}{4}=\frac{-11}{2}\notin I
Deci solutia ecuatiei este x=-1
5) cum aflam cosinusul unghiului format de diagonalele unui dreptunghi
In triunghiul ABC aplicam Teorema lui Pitagora
AC^{2}=AB^{2}+BC^{2}\Rightarrow AC^{2}=256+144\Rightarrow AC=\sqrt{400}\Rightarrow AC=20 cm.
Stim ca OB=OC=\frac{AC}{2}=\frac{20}{2}=10
Acum daca aplicam Teorema cosinusului gasim ca
BC^{2}=OB^{2}+OC^{2}-2\cdot OB\cdot OC\cdot cos\widehat{BOC}\Rightarrow 144=100+100-2\cdot 10\cdot 10\cdot\cos\widehat{BOC}\Rightarrow 144-200=-200\cdot\cos\widehat{BOC}\Rightarrow -56=-200\cdot\cos\widehat{BOC}\Rightarrow \cos\widehat{BOC}=\frac{56}{200}\Rightarrow \cos\widehat{BOC}=\frac{7}{25}
6) Problema rezolvata cu vectori
Stim ca O este centrul de greutate al triunghiului (intr-un triunghi echilateral medianele, mediatoarele, bisectoarele si inaltimile coincid), atunci
\vec{AO}=\frac{2}{3}\vec{AM}, deci gasim cs
a=\frac{2}{3}
deci stim ca punctul de intersectie al medianelor este situat la doua treimi fata de varf si o treime fata de baza.

Acesta a fost subiectul I simulare bacalaureat 2014 cls. XI SI XII .