Subiecte posibile Evaluarea Nationala Matematica

Subiectul II
1. Desenati o prisma patrulatera regulata ABCDA’B’C’D’
2. Aflati trei numere naturale consecutive impare, stiind ca daca suma lor se imparte la 8 obtinem catul 15 si restul 3.
3. Cate numere de forma \bar{4ab} sunt divizibile cu 41.
4. Consideram functia f:R\rightarrow R, f\left(x\right)=\left(2a+3\right)x-3a+2. Stiind ca graficul lui f contine punctul A\left(-1,-6\right) se cere:
a) Aratati ca a=1 si reprezentati grafic functia obtinuta
b) Determinati punctul de pe graficul functiei f care are abscisa egala cu un sfert din ordonata.
5. Se considera expresia E\left(x\right)=\left(\frac{2x}{x-1}-\frac{x}{x+1}\right):\frac{x^{2}+3x^{2}}{x^{3}+2x^{2}+x}, unde x\in R-\left\{-3,-1,0,1\right\}. Aduceti expresia data la forma cea mai simpla.
Solutie:
1. Mai intai desenam prisam patrulatera regulata ABCDA’B’C’D’
Cum desenam o prisma patrulater regulata
2. Cum aflam trei numere naturale consecutive impare? cand avem anumite conditii in ipoteza. In primul rand folosim teorema impartirii cu rest, dar trebuie sa mai tinem cont ca avem si numere naturale impare consecutive, astfel fiem numerele impare consecutive:
n, n+2, n+4
Stim ca suma numerelor se imparte la 8, astfel suma lor este
n+n+2+n+4=3n+6
Suma lor se imparte la 8
\left(3n+6\right):8 se obtine q=15 si restul r=3
Astfel folosim Teorema impartirii cu rest:
3n+6=15\cdot 8+3
Acum rezolvam ecuatia:
3n+6=15\cdot 8+3\Rightarrow 3n+6=120+3\Rightarrow 3n+6=123\Rightarrow 3n=123-6\Rightarrow 3n=117\Rightarrow n=117:3\Rightarrow n=39
Deci am gasit n=39 si este un numar impar.
Deci primul numar este 39, acum sa aflam si celelate 2 numere.
n+2=39+2=41
Dar si
n+4=39+4=43
Deci numerele impare consecutive sunt 39,41,43
Acum daca efectuam proba obtinem:
39+41+43=123
Acum daca impartim
123:8 obtinem catul q=15si restul r=3
3. Cum gasim numerele de form \bar{4ab} devizibile cu 41
Cautam numerel divizibile 41 intre 400\;\; si\;\; 499
Observam ca numarul 41 este un numar prim, deci numerele divizibile trebuie sa fie de form 41\cdot x
Iar daca luam pentru x=10 obtinem 41\cdot 10=410 divizibil cu 41, deci primul numar este: 410, deci a=1 si b=0
Pentru x=11 obtinem 41\cdot 11=451divizibil cu 41, al dolile numar divizibil cu 41 este 451, astfel a=5 si b=1
Pentru x=12 obtinem 41\cdot 12=492 divizibil cu 41, al treilea numar divizibil cu 41 este 492, astfel a=9 si b=2.
Deci avem trei numere divizibile cu 41 de forma \bar{4ab}
Pentru x=13 obtineam un numar mai mare decat 4ab si astfe nu se mai indeplinea conditia aceasta, la fel si pentru x<10 se obtinea un numar mai mic decat de forma 4ab. 4. a) Pentru a obtine a=1 stim ca $latex A\left(-1,-6\right)$ apartine graficului functiei, astfel avem ca: $latex f\left(-1\right)=-6\Rightarrow \left(2a+3\right)\cdot\left(-1\right)-3a+2=-6\Rightarrow -2a-3-3a+2=-6\Rightarrow-5a-1=-6\Rightarrow -5a=-6+1\Rightarrow -5a=-5\Rightarrow a=1$ Pentru a=1 sa reprezentam grafic functia, astfel obtinem functia: $latex f\left(x\right)=\left(2\cdot 1+3\right)x-3\cdot 1+2\Rightarrow f\left(x\right)=\left(2+3\right)x-3+2=5x-1$ DEci functia obtinuta este $latex f\left(x\right)=5x-1$ Acum reprezentam grafic functia: Astfel avem $latex G_{f}\cap Ox$ avem ca $latex f\left(x\right)=0\Rightarrow 5x-1=0\Rightarrow 5x=1\Rightarrow x=\frac{1}{5}$ Deci avem $latex A\left(\frac{1}{5}, 0\right)$ Acum calculam $latex G_{f}\cap Oy$, astfel calculam $latex f\left(0\right)=5\cdot 0-1=0-1=-1$ Deci $latex B\left(0,-1\right)$ Acum reprezentam grafic functia. reprezentarea grafica a functie
b) Acum trebuie sa determinam punctul de pe graficul functie f care are absscisa egala cu un sfer de ordonata.
Astfel fie punctul M\left(x,y\right), dar stim ca abscisa este egala cu un sfert de ordonata, astfel avem ca
x=\frac{1}{4}\cdot y, astfel obtinem acum M\left(\frac{1}{4}y,y\right)
astfel obtinem ca:
f\left(\frac{1}{4}y\right)=y\Rightarrow 5\cdot \frac{1}{4}y-1=y\Rightarrow \frac{5y}{4}-1=y\Rightarrow \frac{5y}{4}-y=1\Rightarrow \frac{5y-4y}{4}=1\Rightarrow\frac{y}{4}=1\Rightarrow y=4
Iar x=\frac{1}{4}\cdot y=\frac{1}{4}\cdot 4=1
Deci obtinem
M\left(1,4\right)
5. Cum aducem expresia la forma cea mai simpla, astfel avem ca:
E\left(x\right)=\left(\frac{2x}{x-1}-\frac{x}{x+1}\right):\frac{x^{2}+3x^{2}}{x^{3}+2x^{2}+x}, unde x\in R-\left\{-3,-1,0,1\right\}
Mai intai in partanteza rotuda aducem la acelasi numitor:
E\left(x\right)=\left(\frac{2x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right):\frac{x^{2}\left(x+3\right)}{x\left(x^{2}+2x+1\right)}
E\left(x\right)=\frac{2x^{2}+2x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x\left(x+1\right)^{2}}{x^{2}\left(x+3\right)}
E\left(x\right)=\frac{x^{2}+3x}{x-1}\cdot\frac{x\left(x+1\right)}{x^{2}\left(x+3\right)}
E\left(x\right)=\frac{x\left(x+3\right)}{x-1}\cdot \frac{x\left(x+1\right)}{x^{2}\left(x+3\right)}
E\left(x\right)=\frac{x^{2}\left(x+3\right)\left(x+1\right)}{x^{2}\left(x+1\right)\left(x+3\right)}^{(x^{2}\left(x+3\right)}
Dupa ce am adus la acelasi numitor in paranteza rotunda, am efectuat calculele si am efectuat impartirea celor doua fractii, adica am inmultit prima fractie cu inversul celei de-a doua, iar apoi am simplificat, unde observati ca am adus expresia la forma cea mai simpla.

E\left(x\right)=\frac{x+1}{x-1}

b) determinati valorile lui x\in Z, pentru care E\left(x\right)\in Z
Stim ca E\left(x\right)\in Z\Rightarrow \frac{x+1}{x-1}\in Z

Mai intai punem conditia ca numitorul divide numaratorul si obtinem:
$latex\left(x-1\right)|\left(x+1\right)$
Astfel rescriid raportul obtinem:

\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=\frac{x-1}{x-1}^{(\left(x-1\right)}+\frac{2}{x-1}=\frac{1}{1}+\frac{2}{x-1}=1+\frac{2}{x-1}

Astfel punand conditia ca numitorul divide numaratorul obtinem:
x-1|2
Si scriind divizorii intreigi ai lui 2 avem:
D_{2}=\left\{\pm 1; \pm 2\right\}
Astfel egaland numitorul cu fiecare divizor obtinem:

x\in\left\{-1; 0; 2; 3\right\}

Exercitii cu radicali Exercitii cu numere reale

Dupa ce am discutat despre numere reale, adica Radacina patrata a unui numar  natural patrat perfect, Modulul unui numar real, Reprezentarea pe axa a numerelor reale, Produsul radicalilor, Catul radicalilor, Introducerea factorilor sub radicali, Scoaterea factorilor de sub radicali, Operatii cu numere reale, Rationalizarea numitorilor unei fractii, Formule de calcul prescurtat si nu in ultimul rand Media geometrica adoua numere reale nenegative astazi o sa ne reaminitm cum se efectueaza aceste exercitii, adica o recapitulare a intregului capitol al Numerelo reale. Astfel prezentam Exercitii cu radicali

 

1. Rezultatul calculului \frac{1}{\sqrt{3}}+\frac{3}{2\sqrt{3}}-\frac{5}{4\sqrt{3}} este …

Ca sa aflam rezultatul acestui calcul mi intai rationalizam numitorii dupa cum am invatat si astfel obtinem:

\frac{\sqrt{3}}{3}+\frac{3\sqrt{3}}{2\cdot 3}-\frac{5\sqrt{3}}{4\cdot 3}=\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{2}-\frac{5\sqrt{3}}{12}=\frac{4\sqrt{3}+6\sqrt{3}-5\sqrt{3}}{12}=\frac{5\sqrt{3}}{12}

2) Calculand \sqrt{27}\left(\frac{4}{\sqrt{3}}-\frac{5\sqrt{3}}{3}\right) se obtine….

Solutie:

3\sqrt{3}\left(\frac{4\sqrt{3}}{3}-\frac{5\sqrt{3}}{3}\right)=3\sqrt{3}\left(\frac{4\sqrt{3}-5\sqrt{3}}{3}\right)=3\sqrt{3}\left(\frac{-sqrt{3}}{3}\right)=\sqrt{3}\cdot\left(-\sqrt{3}\right)=-3

Ca sa rezolvam exercitiul de mai sus, mai intai am scos factorii de sub radicali, iar apoi am rationalizat, am efectuat calculele si astfel am gasit rezultatul final, nu inainte de a simplifica pe unde am putut.

3. Rezultatul calculului \frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{1+\sqrt{2}} este egal cu …
Solutie

Ca sa afla rezultatul calculului mai intai rationalizam numitorii, cu regula care am invatat-o la lectua Rationalizarea numitorilor

a sa afla rezultatul calculului mai intai rationalizam numitorii, cu regula care am invatat-o la lectua Rationalizarea numitorilor

\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{4}\right)^{2}}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1-\sqrt{2}}{1^{2}-\left(\sqrt{2}\right)^{2}}=

\frac{\sqrt{3}-2}{3-4}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{1-\sqrt{2}}{1-2}=\frac{\sqrt{3}-2}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{1-\sqrt{2}}{-1}=1

4. Daca x=\sqrt{\left(2-\sqrt{5}\right)^{2}}+|\sqrt{5}-3|=|2-\sqrt{5}|+|\sqrt{5}-3|=\sqrt{5}-2+3-\sqrt{5}=-2+3=1

Ca sa rezolvam exercitiul de mai sus trebuie sa tinem cont de anumite reguli, adica:

stim \sqrt{a^{2}}=|a|=a,\;\;\;daca\;\;\; a>0 si -a\;\;\;daca \;\;\;a<0 astfel in cazul nostru stim ca \sqrt{5}\approx 2, 236 deci mai mare decat 2 si astfel obtinem:

 

\sqrt{\left(2-\sqrt{5}\right)^{2}}=|2-\sqrt{5}|=-\left(2-\sqrt{5}\right)=-2+\sqrt{5}=\sqrt{5}-2

asemanator facem si pentru |\sqrt{5}-3|.

5. Daca x=\sqrt{\left(1-\sqrt{2}\right)^{2}}, y=\sqrt{\left(\sqrt{2}-3\right)^{2}} si z=2\sqrt{6}\left(\frac{4\sqrt{3}}{\sqrt{2}}-\frac{3\sqrt{2}}{\sqrt{3}}\right), atunci x+y-z este….

Solutie:

Calculam mai intai

x=|1-\sqrt{2}|=-\left(1-\sqrt{2}\right)=\sqrt{2}-1, iar apoi

y=|\sqrt{2}-3|=-\left(\sqrt{2}-3\right)=3-\sqrt{2}, deoarece observam ca \sqrt{2}<3, \sqrt{2}\approx 2,141

iar

z= 2\sqrt{6}\left(\frac{\sqrt{3}\cdot 4\sqrt{3}-\sqrt{2}\cdot 3\sqrt{2}}{\sqrt{6}}\right)=2\sqrt{6}\cdot \frac{4\sqrt{9}-3\sqrt{4}}{\sqrt{6}}=2\sqrt{6}\cdot\frac{4\cdot 3-3\cdot 2}{\sqrt{6}}=2\sqrt{6}\cdot\frac{12-6}{\sqrt{6}}=2\sqrt{6}\cdot\frac{6}{\sqrt{6}}=2\cdot 6=12

Observam ca la exercitiul de mai sus mai intai in paranteza am adus la acelasi numitor comun (puteam sa si rationalizam, de obiecei alegem metoda care ni se pare mai usoara), am efectuat calculele din paranteza , iar apoi am efectuat produsul dintre numarul din fata parantezei si rezultatul din paranteza, nu inainte de a simplifica.

Acum calculam x+y-z=\sqrt{2}-1+3-\sqrt{2}-12=2-12=-10

6. Calculand \frac{2}{\sqrt{5}-\sqrt{3}}+\frac{6}{\sqrt{3}}-\frac{5}{\sqrt{5}}, se obtine…

Solutie

\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{6\sqrt{3}}{3}-\frac{5\sqrt{5}}{5}=    \frac{2\sqrt{5}+2\sqrt{3}}{5-3}+2\sqrt{3}-\sqrt{5}=\frac{2\sqrt{5}+2\sqrt{3}}{2}+2\sqrt{3}-\sqrt{5}=\frac{2\sqrt{5}+2\sqrt{3}+4\sqrt{3}-2\sqrt{5}}{2}=\frac{6\sqrt{3}}{2}=3\sqrt{3}.

Observati  ca acum am rationalizat pare mai usor de calculat si gasim cam greu numitorul comun, iar apoi am efectuat calculele cu numere reale, adica am folosit regulile de calcul cu radicali si astfel am gasit rezultatul.

7. Daca a=\sqrt{\left(\sqrt{3}-3\right)^{2}} si b=\sqrt{\left(2+\sqrt{3}\right)^{2}} atunci media aritmetica a lor este egal cu….

Solutie:

Mai intai calculam a=|\sqrt{3}-3|=-\left(\sqrt{3}-3\right)=3-\sqrt{3}, iar

b=|2+\sqrt{3}|=2+\sqrt{3}, astfel media aritmetica a celor doua numere este:

m_{a}=\frac{a+b}{2}=\frac{3-\sqrt{3}+2+\sqrt{3}}{2}=\frac{3+2}{2}=\frac{5}{2}.

8. Calculand

\left(\frac{\sqrt{5}-\sqrt{2}}{\sqrt{3}}-\frac{\sqrt{3}}{\sqrt{5}+\sqrt{2}}\right)^{12}+\sqrt{\left(1-\sqrt{5}\right)^{2}}-|2-\sqrt{5}| se obtine…

Solutie:

\left(\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{3}-\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\right)^{12}+|1-\sqrt{5}|-\left[-\left(2-\sqrt{5}\right)\right]=

\left(\frac{\sqrt{15}-\sqrt{6}}{3}-\frac{\sqrt{15}-\sqrt{6}}{5-2}\right)^{12}+\sqrt{5}-1-\left(-2+\sqrt{5}\right)=

\left(\frac{\sqrt{15}-\sqrt{6}}{3}-\frac{\sqrt{15}-\sqrt{6}}{3}\right)^{12}+\sqrt{5}-1+2-\sqrt{5}=\left(\frac{\sqrt{15}-\sqrt{6}-\sqrt{15}+\sqrt{6}}{3}\right)^{12}+1

Ca sa rezolvam exercitiul de mai sus  observam ca am rationalizat fractiile, iar apoi am efectuat calculele si astfel am observat ca ni s-au redus toti termenii, iar modulele le-am rezolvat cum am facut mai sus .Astfel am obtinut rezultatul 1.

9. Calculand \sqrt{4-\sqrt{7}}\cdot\sqrt{4+\sqrt{7}}-\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}} se obtine….

Solutie

\sqrt{\left(4-\sqrt{7}\right)\cdot\left(4+\sqrt{7}\right)}

-\sqrt{\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)}=

\sqrt{4^{2}-\sqrt{7}^{2}}-\sqrt{2^{2}-\sqrt{3}^{2}}=    \sqrt{16-7}-\sqrt{4-3}=\sqrt{9}-\sqrt{1}=3-1=2

Ca sa rezolvam exercitiul de mai sus am folosit produsul radicalilor, dar si formulele de calcul prescurtat, adica formula a^{2}-b^{2}=\left(a-b\right)\cdot\left(a+ \right) precum si radacina patrata a unui numar natural.

Deci e important ca la exercitii cu radicali sa invatam toate notiunile care tin de acest capitol.

 

 

 

Formule de calcul prescurtat

Formule de calcul prescurtat

Astazi o sa invatam tehnici si procedee care ofera posibilitatea unui calcul mai rapid al expresiilor care contin radicali  sau permit scrierea radicalilor dubli sub forma unor expresii care contin radicali simpli.  Deci acum invatam urmatoarele formule de calcul prescurtat:

Formule de calcul prescurtat

1) \left(a+b\right)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

2) \left(a-b\right)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

3) a^{2}-b^{2}=\left(a-b\right)\cdot\left(a+b\right)

4) \sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+C}{2}}\pm\sqrt{\frac{A-C}{2}}, unde C=\sqrt{A^{2}-B}.

Deci este  foarte important sa intelegem cum sa aplicam formulele de calcul prescurtat.

Exemplu:

1) Calculati

a) 4\left(3\sqrt{3}-1\right)^{2}-5\left(\sqrt{3}-4\right)^{2}-\sqrt{768}=    4\left[\left(3\sqrt{3}\right)^{2}-2\cdot 3\sqrt{3}\cdot 1+1^{2}\right]-5\left[\left(\sqrt{3}\right)^{2}-2\cdot \sqrt{3}\cdot 4+4^{2}\right]-16\sqrt{3}=    4\left(27-6\sqrt{3}+1\right)-5\left(3-8\sqrt{3}+16\right)-16\sqrt{3}=    4\left(28-6\sqrt{3}\right)-5\left(19-8\sqrt{3}\right)-16\sqrt{3}=    112-24\sqrt{3}-95+40\sqrt{3}-16\sqrt{3}=    17+\sqrt{3}\left(-24+40-16\right)=17+\sqrt{3}\cdot 0=17

Ca sa rezolvam exercitiul de mai sus  am aplicat cea de-a doua formula, unde observati ca pentru primul patrat a=3\sqrt{3} si b=1, iar pentru cel de-al doilea patrat observam ca a=\sqrt{3} si b=4, iar din numarul $\sqrt{768}$ am scos factori de sub radicali si am obtinut \sqrt{768}=\sqrt{2^{2}\cdot 2^{2}\cdot 2^{2}\cdot 2^{2}\cdot 3}=2\cdot 2\cdot 2\cdot 2\cdot \sqrt{3}=16\sqrt{3}

cum scoatem factori de sub radicali

 

, apoi am efectuat calculele , adica am ridicat numerelor la patrat si am inmultit, apoi am adunat si am scazut si astfel am gasit rezultatul.

b) \left(\sqrt{3}+2\sqrt{2}\right)^{2} +\left(3\sqrt{3}-\sqrt{2}\right)^{2}

-\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(\sqrt{3}+\sqrt{2}\right)+2\sqrt{6}=

\left(\sqrt{3}\right)^{2}+2\cdot \sqrt{3}\cdot 2\sqrt{2}+\left(2\sqrt{2}\right)^{2}+\left(3\sqrt{3}\right)^{2}-2\cdot 3\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\left[\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}\right]+2\sqrt{6}=    3+4\sqrt{6}+8+27-6\sqrt{6}+2-3+2+2\sqrt{6}=39

Ca sa rezolvam exercitiul de mai sus am folosit primele  doua formule adica

\left(a+b\right)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

\left(a-b\right)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

unde pentru prima paranteza a=\sqrt{3}, b=2\sqrt{2}, dar trebuie sa avem grija tot timpul sa introducem si termenul din mijloc adica 2ab, pe cafre majoritatea dintre voi il uitati sau pierdeti, pentru patratul cel de-al doilea (paranteza a doua) a=3\sqrt{3}, b=\sqrt{2} la fel si aici trebuie sa tinem cont si de termenul 2ab, dar observam ca la exercitul nostru mai avem si a treia formula de aplicat adica \left(\sqrt{3}-\sqrt{2}\right)\cdot\left(\sqrt{3}+\sqrt{2}\right), unde a=\sqrt{3}, b=\sqrt{2}, deci observati ca noi acum aplicam partea de inceput a formulei a treia, adica \left(a-b\right)\cdot\left(a+b\right)=a^{2}-b^{2} si obtinem \left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2} iar restul este calcul, folosim regulile de calcul cu radicali.

c) \sqrt{11-6\sqrt{2}}+\sqrt{7-4\sqrt{3}}+\frac{1}{\sqrt{5-2\sqrt{6}}}=

Calculam mai intai, adica putem sa aplicam formula 4) sau sa ne gandim cum putem sa scriem numarul de sub radical ca sa obtinem un patrat sub radical

\sqrt{11-6\sqrt{2}}=\sqrt{3-2\cdot 3\cdot \sqrt{2}+\left(\sqrt{2}\right)^{2}}=\sqrt{\left(3-\sqrt{2}\right)^{2}}=3-\sqrt{2},

ca sa observam mai usor cu aceasta metoda trebuie sa ne uitam la termenul care formeaza suma celor doua patrate adica 11, dar si la produsul dintre 2 si ”ab”, deci impartim la 2 si obtinem 6\sqrt{2}=2\cdot 3\cdot\sqrt{2} si astfel am obtinut a=3 si b=\sqrt{2}.

Sau cu formula de mai sus, dar mai intai trebuie sa obtinem ce avem sub radical sub forma \sqrt{A-\sqrt{B}}, deci introducem la cel de-al doilea radical factorul sub radical, adica \sqrt{11-\sqrt{36\cdot 2}}=\sqrt{11-\sqrt{72}}, dupa ce am adus la formam care ne trebuia

calculamC=\sqrt{A^{2}-B}=\sqrt{11^{2}-72}=\sqrt{121-72}=\sqrt{49}=7, acum aplicam formula propriu zisa

\sqrt{11-\sqrt{72}}=\sqrt{\frac{11+7}{2}}-\sqrt{\frac{11-7}{2}}=\sqrt{\frac{18}{2}}-\sqrt{\frac{4}{2}}=\sqrt{9}-\sqrt{2}=3-\sqrt{2}

Calculam acum cel de-al doilea radical

\sqrt{7-4\sqrt{3}}=\sqrt{4+3-2\cdot 2\cdot \sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^{2}}=2-\sqrt{3}

\sqrt{5-2\sqrt{6}}=\sqrt{5-2\cdot\sqrt{2}\cdot\sqrt{3}}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^{2}}=\sqrt{3}-\sqrt{2}

am inversat radical din 2 cu radical din 3 pentru ca radical din 3 mai mare decat radical din 2, noi obtinem sub radical modul din acel numar si din acest motiv trebuie sa avem grija cum scriem numarul.

Pentru ceilalti doi radicali aplicati voi formula de mai sus, mie mi se pare mai usor sa folosesc formulele de calcul prescurtat.

Acum scriem ce am gasit

3-\sqrt{2}+2-\sqrt{3}+\frac{1}{\sqrt{3}-\sqrt{2}}=5-\sqrt{2}-\sqrt{3}+\frac{\sqrt{3}+\sqrt{2}}{3-2}=    5-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{2}=5

Observati ca mai sus am si rationalizat, iar apoi am folosit regulile de calcul cu radicali.

 

Formulele de calcul prescurtat

Despre formulele de calcul prescurtat ati mai  auzit, astfel acum o sa rezolvam exercitii cu formule de calcul prescurtat.Este important sa stim sa aplicam formulele de calcul prescurtat pentru cand o sa invatam sa lucram cu rapoarte.
1)Efectuati:
<br /> \left(3\sqrt{2}-x\right)\left(3\sqrt{2}+x\right)-\left(3x-2\sqrt{2}\right)\left(3x+2\sqrt{2}\right)+\left(\sqrt{10}x-1\right)\left(\sqrt{10}x+1\right)
Pentru a rezolva exercitiul de mai sus folosim urmatoarea formula de calcul prescurtat \left(a+b\right)\left(a-b\right)=a^{2}-b^{2}, astfel:
<br /> \left(3\sqrt{2}\right)^{2}-x^{2}-\left[\left(3x\right)^{2}-\left(2\sqrt{2}\right)^{2}\right]+\left(\sqrt{10}x\right)^{2}-1^{2}=<br /> 9\cdot 2-x^{2}-9x^{2}+8+10x^{2}-1=<br /> \\18-x^{2}-9x^{2}+7+10x^{2}=25
Dupa cum am mai spus si mai sus am folosit formula de calcul prescurtat \left(a+b\right)\left(a-b\right)=a^{2}-b^{2}, iar apoi la paranteza a doua am avut grija de semnul din fata parantezei (stim ca semnul din fata parantezei schimba toate semnele), iar apoi am ridicat termenii la patrat.Restul este vorba de calcul algebric, adica am luat, subliniat termenii asemenea si am facut calculele.
b) <br /> \left(x+3\right)\left(x-3\right)-\left(x+1\right)^{2}=<br /> x^{2}-3^{2}-\left(x^{2}+2x+1^{2}\right)=<br /> x^{2}-9-x^{2}-2x-1=-10-2x=-2\left(5+x\right)<br />
Ca sa rezolvam exercitiul de mai sus am folosit doua formule: prima data formula pe care am folosit-o si la primul exercitiu iar pentru al doilea termen am folosit formula:\left(a+b\right)^{2}=a^{2}+2ab+b^{2}, deci in cazul nostru a=x si b=1, iar apoi am subliniat termenii asemenea pentru a-i aduna,  folosind calculul algebric (adica am subliniat termenii cu x si i-am adunat) si regulile de calcul cu numere intregi.
c) <br /> \left(\sqrt{5}+\sqrt{3}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-1\right)^{2}-2\left(\sqrt{3}+\sqrt{5}\right)=
\sqrt{5}^{2}+2\sqrt{5}\sqrt{3}+\sqrt{3}^{2}-\left(\sqrt{5}^{2}+\sqrt{3}^{2}+1^{2}+2\sqrt{5}\sqrt{3}-2\sqrt{5}\cdot 1-2\sqrt{3}\cdot 1\right)-2\sqrt{3}-2\sqrt{5}=<br /> 5+2\sqrt{15}+3-\left(5+3+1+2\sqrt{15}-2\sqrt{5}-2\sqrt{3}\right)-2\sqrt{3}-2\sqrt{5}=\\<br /> 8+2\sqrt{15}-\left(9+2\sqrt{15}-2\sqrt{5}-2\sqrt{3}\right)-2\sqrt{3}-2\sqrt{5}=<br /> 8+2\sqrt{15}-9-2\sqrt{15}+2\sqrt{5}+2\sqrt{3}-2\sqrt{3}-2\sqrt{5}=-1<br />
La exercitiul de mai sus am folosit prima data urmatoarea formula de calcul prescurtat \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, iar pentru a doua paranteza am folosit urmatoarea formula \left(a+b-c\right)^{2}=a^{2}+b^{2}+c^{2}+2ab-2ac-2bc, unde a=\sqrt{5}, b=\sqrt{3}, c=\sqrt{1}, iar la ultima paranteza am introdus factorul comun 2 in fractie, dupa ce am terminat aceasta etapa a exercitiului am efectuat calculele cu termenii asemenea si am obtinut rezultatul -1. Trebuie sa tinem cont de faptul ca la a doua paranteza nu am desfintat-o pentru ca aveam semnul -, iar semnul din fata parantezei schimba toate semnele.
Important este sa invatam formulele de calcul prescurtat si sa stim sa le aplicam.

Operatii cu numere reale. Formule de calcul prescurtat

Inca din generala ati invatat sa efectuati operatii cu numere reale, dar sa si folositi formulele de calcul prescurtat. Incercam sa rezolvam exercitii astfel incat sa ne reamintim cum sa folosim numerele reale si formulele de calcul prescurtat.

1) Calculati:
a) <br /> \left(\frac{2}{5\sqrt{3}}-\frac{1}{\sqrt{12}}+\frac{3}{\sqrt{75}}\right):\left(2\sqrt{3}\right)^{-1}=\\</p> <p>\left(\frac{2\sqrt{3}}{15}-\frac{\sqrt{12}}{12}+\frac{3\sqrt{75}}{75}\right): \frac{1}{2\sqrt{3}}=\\<br /> \left(\frac{2\sqrt{3}}{15}-\frac{2\sqrt{3}}{12}+\frac{3\sqrt{75}}{75}\right)\cdot 2\sqrt{3}=\\<br /> \left(\frac{2\sqrt{3}}{15}-\frac{\sqrt{3}}{6}+\frac{5\sqrt{3}}{25}\right)\cdot 2\sqrt{3}=\\<br /> \left(\frac{2\sqrt{3}}{15}-\frac{\sqrt{3}}{6}+\frac{\sqrt{3}}{5}\right)\cdot 2\sqrt{3}=\\<br /> \left(\frac{2\cdot 2\sqrt{3}-5\cdot\sqrt{3}+6\cdot\sqrt{3}}{30}\right)\cdot 2\sqrt{3}=\\<br /> \left(\frac{4\sqrt{3}-5\sqrt{3}+6\sqrt{3}}{30}\right)\cdot 2\sqrt{3}=<br /> \left(\frac{5\sqrt{3}}{30}\right)\cdot 2\sqrt{3}=<br /> \frac{5\cdot 3}{15}=1.</p> <p>

Ca sa rezolvam exercitiul de mai sus am rationalizat numitorii, am scos factorii de sub radicali (stim ca \sqrt{a^{2}}=|a|, \sqrt{a^{2}\cdot b}=|a|\sqrt{b}), iar apoi am simplificat pe unde s-a putut, pentru a ne simplifica calculele, am adus la acelasi numitor, am efectuat calculele iar apoi am facut produsul celor doua rezultate, stim ca a^{-1}=\frac{1}{a} si de aici obtinem \left(2\sqrt{3}\right)^{-1}=\frac{1}{2\sqrt{3}},iar de la impartirea a doua numere rationale stim ca este egal cu produsul dintre primul si inversul celui de-al doilea, de unde obtinem rezultatul.

b) <br /> \sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(2-\sqrt{3}\right)^{2}}+\sqrt{\left(1-\sqrt{3}\right)^{2}}+\sqrt{\left(1-\sqrt{2}\right)^{2}}=\\<br /> \left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|+\left|1-\sqrt{2}\right|=2-\sqrt{3}+\sqrt{3}-1+\sqrt{2}-1=\sqrt{2}.<br />

Dupa cum stiti din clasa a VIII-a trebuie sa sa gasim o forma astfel incat sa putem sa scriem numerele de sub radical la patrat pentru ca stim ca  \sqrt{a}=\left|a\right|, astfel folosim formulele de calcul prescurtat, pentru a putea scoate factorii de sub radicali, iar apoi folosim definitia modulului, iar apoi restul este un simplu calcul.
c)</p> <p>2\sqrt{7-\sqrt{48}}+3\sqrt{43-30\sqrt{2}}+9\sqrt{25-4\sqrt{6}}=<br /> 2\sqrt{\left(2-\sqrt{3}\right)^{2}}+3\sqrt{\left(5-3\sqrt{2}\right)^{2}}+9\sqrt{\left(1-2\sqrt{6}\right)^{2}}=<br /> \\2\left|2-\sqrt{3}\right|+3\left|3\sqrt{2}-5\right|+9\left|2\sqrt{6}-1\right|=<br /> \\2\left(2-\sqrt{3}\right)+3\left(5-3\sqrt{2}\right)+9\left(2\sqrt{6}-1\right)=<br /> 4-2\sqrt{3}+15-9\sqrt{2}+18\sqrt{6}-9=10-2\sqrt{3}-9\sqrt{2}+18\sqrt{6}

Ca sa rezolvam exercitiile ca si la exercitiul b) trebuie sa folosim formulele de calcul prescurtat ca sa scriem numarul de sub radical ca un numar la patrat. Observam cum sa-l scriem de exemplu la primul radical 7-\sqrt{48}, trebuie sa ne gandim ca suma la patrat a celor doua numere trebuie sa obtinem, iar produsul celor doua numere trebuie sa fie \sqrt{48}, cum stim ca folosim formula de calcul prescurtat (a-b)^{2}=a^{2}-2ab+b^{2}, dar la noi 2 este introdus sub radical, iar daca scoatem factorul de sub radicalul \sqrt{48}=2\sqrt{12}, deci produsul dintre a si b este a\cdot b=\sqrt{12}, iar singura posibilitate este ca a=\sqrt{3}, b=\sqrt{4}=2.

Sau putem folosi formulaele
<br /> \sqrt{a+\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^{2}-b}}{2}}+\sqrt{\frac{a-\sqrt{a^{2}-b}}{2}}<br /> \\\sqrt{a-\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^{2}-b}}{2}}-\sqrt{\frac{a-\sqrt{a^{2}-b}}{2}}<br />

Formulele de mai sus se numesc formulele radicalilor compusi, si ne ajuta sa scriem radicali chiar daca necesita mai mult calcul.

Recapitulare pentru clasa a VIII-a. Evaluarea initiala

Acum ca am ajuns in clasa a VIII-a si stim ca peste cateva luni vine Evaluarea Nationala. La evaluarea initiala trebuie sa stim clasa a VII-a, care joaca un rol important pentru examen. Propun sa recapitulam din clasa a VII- a Calculul algebric. Incepem cu cateva exemple:
1 Efectuati calculele:
a)  (x+1)^{2}-x(x+5)=<br /> x^{2}+2x+1-x^{2}-5x=<br /> -3x+1<br />
Astfel in prima paranteza am aplicata formula de calcul prescurtat care am invatat-o prima data in clasa a VII-a <br /> (a+b)^{2}=a^{2}+2ab+b^{2}, unde a=x si b=1, iar pentru paranteza a doua aplicam distributivitatea inmultirii fata de adunare( adica inmultim pe x cu fiecare termen din paranteza, dar trebuie sa tinem cont de semn, adica semnul din fata parantezei schimba toate semnele din acest motiv avem -5x), dupa ce am terminat distributivitatea vedem ce termeni asemenea avem in cazul nostru  x^{2} se reduce, iar alti termeni care ii avem asemenea sunt  -5x+2x =-3, daca ne uitam la regula semnelor .
2 Aflati solutia ecuatiilor
1)  2(x+2)+\sqrt{x^{2}-4x+4}=2x+9 \Leftrightarrow<br /> 2x+4+\sqrt{(x-2)^{2}}=2x+9 \Leftrightarrow<br /> 2x+4+|x-2|=2x+9 \Leftrightarrow<br /> 2x+4+x-2=2x+9 \Leftrightarrow<br /> 3x+2=2x+9 \Leftrightarrow<br /> x=7
si
2x+4-(x-2)=2x+9 \Leftrightarrow<br /> 2x+4-x+2=2x+9 \Leftrightarrow<br /> x+6=2x+9 \Leftrightarrow<br /> x-2x=9-6 \Leftrightarrow<br /> -x=3 \Leftrightarrow<br /> x=-3<br /> s={-3;7}<br />
Procedeul de calcul:
am desfintat prima paranteza cu ajutorul distributivitatii inmultirii fata de adunare, apoi incercam sa-l scriem expresia de sub radical ca un numar la puterea a doua, deoarece stiim ca  \sqrt{a^{2}}=|a|, astfel  x^{2}-4x+4 la o privire atenta vedem ca este parte a doua a formulei de calcul prescurtat a^{2}-2ab+b^{2} putem considera  x^{2}=a^{2}, 4 putem sa-l scriem ca  2^{2}, adica b=2 si astfel putem scrie radicalul ca  (x^{2}-2)^{2}, astfel \sqrt{(x^{2}-2)^{2}}=|x-2|. Stiim din clasa a VI-a ca
|a|=<br /> \\ a,\;\;\; daca\;\; a>0<br /> \\-a\;\;\; daca \;\;a<0<br />
astfel |x-2|=<br /> \\ x-2,\;\;\; daca\;\;\; x-2>0 \Rightarrow x>2<br /> \\-(x-2)\;\;\; daca x-2<0\;\;\; \Rightarrow x<2<br />
astfel ecuatia se imparte in doua ramuri:in prima ecuatie pentru partea pozitiva, adica x+2 gasim termeni asemenea (trecem necunoscutele in stanga si cunoscutele in dreapta ) facem calculele si obtinem solutia ecuatiei. Acelasi lucru si pentru partea negativa cu o mica exceptie adica luam -(x-2), trebuie sa avem grija la semnul din fata parantezei.