Teorema catetei

Teorema catetei

Astazi o sa vorbim despre teorema catetei, care de asemenea joaca un rol important pentru a rezolva probleme in cazul in care stim o cateta si proiectia acesteia pe ipotenuza sau daca stim proiectia unei catete pe ipotenuza si ipotenuza. Astfel enuntul teoremei catetei este:
Intr-un triunghi dreptunghic patratul lungimii unei catete este egal cu produsul dintre lungimea ipotenuzei si proiectia acesteia pe ipotenuza.
 Teorema catetei
<br /> AB^{2}=BD\cdot BC<br />
in cazul in care vrem sa aflam cateta AB si stim BD, BC sau stim BD, AB si vrem sa aflam BC
sau
<br /> AC^{2}=CD\cdot BC<br /> .
in cazul in care vrem sa aflam cateta AC si stim DC, BC.
Exemplu:
In triunghiul dreptunghic ABC,  m(\prec A)=90^{0} , mediana AM, M\in (BC) este egala cu latura AB, Stiind ca AM=12 cm calculati:
a) lungimea proiectiilor BD si CD
b) lungimea catetei AC
Ip:
\\\Delta ABC dreptunghic
\\m(\prec A)=90^{0}
AM=12 cm
Cz: a) BD=?; DC=?
b) AC=?
Dem:
Teorema catetei aplicatie

AB=AM (din ipoteza), atunci triunghiul ABM isoscel, deci AB=12 cm. Stiim din clasa a VI-a teorema medianei, care ne spune ca ” Intr-un triunghi dreptunghic mediana dusa din varful unghiului drept masoara jumatate din ipotenuza”. Astfel ipoteza la noi este verificata, avem un triunghi dreptunghic, astfel aflam BC
<br /> \\AM=\frac{1}{2}\cdot BC<br /> \\ 12=\frac{1}{2}\cdot BC<br /> \\ BC=24 cm.<br />
Stim ca AM=AB, dar AM=BM deoarece AM mediana (se numeste mediana unui triunghi segmentul care uneste un triunghi cu mijlocul laturii opuse), deci  AM=BM=AB=12 cm, deci triunghiul ABM este echilateral.

Masura unghiului
Cum triunghiul ABM echilateral rezulta ca  m(\prec ABM)=60^{0}. Deci m(\prec ACB)= 30^{0}. Acum in triunghiul ADB dreptunghic in D, cu  m(\prec BAD)=30^{0} aplicam teorema 30^{0}-60^{0}-90^{0}, deci  BD=\frac{1}{2} \cdot AB. Deci BD=6 cm. Sau aplicam teorema catetei AB^{2}=BD\cdot BC\Rightarrow 144=BD\cdot 24\Rightarrow BD=\frac{144}{24}\Rightarrow BD=6 cm.
Cum BC=24 cm, BD=6 cm. Deci DC=24-6 =18 cm, iar pentru a afla AC aplicam teorema catetei AC^{2}=DC\cdot BC \Rightarrow AC^{2}=18\cdot 24\Rightarrow AC=\sqrt{18\cdot 24}\Rightarrow AC=12\sqrt{3} cm.
Deci ca sa rezolvam probleme ca cele de mai sus trebuie sa stim si cunostintele pe care le-am invatat in clasele anterioare.

Teorema lui Pitagora

Este foarte important sa intelegem Teorema lui Pitagora, deoarece in aproape orice triunghi dreptunghic putem sa o aplicam daca stim ipotenuza si o cateta, sau cele doua catete ajutandu-ne foarte mult in geometrie.

Astfel enuntul teoremei lui Pitagora este:

Intr-un triunghi dreptunghic patratul lungimii ipotenuzei este suma patratelor catetelor.
 BC^{2}=AB^{2}+AC^{2}

Triunghiul dreptunghic. Teorema lui Pitagora
Observatie. Este foarte important ca sa intelegem ipoteza teoremei, adica tot timpul ca sa aplic teorema lui Pitagora trebuie sa avem un triunghi dreptunghic, (adica triunghiul sa aiba un unghi de 90^{0}).

Trebuie sa stim care este ipotenuza triunghiului (pentru ca felul in care desenam triunghiul dreptunghic si il notam difera de la o problema la alta, astfel triunghiul de mai sus are ipotenuza BC, dar puteam sa notez triunghiul altfel si astfel ipotenuza ar fi fost alta).

Exp:
Triunghiul ABC cu m(\widehat{ABC})=90^{0}, AB=4 cm, BC=3 cm. Calculati AC.
Ip:
 \Delta ABC, m(\widehat{B}=90^{0}), AB=4 cm, BC=3
Cz:AC=?
Dem:
Aplicatie Teorema lui Pitagora cm
triunghiul ABC dreptunghic,, stim ambele catete, deci ipoteza teoremei lui Pitagora este verificata.

Aplicam Teorema lui Pitagora in triunghiul ABC
AC^{2}=AB^{2}+BC^{2}
 AC^{2}=16+ 9
 AC^{2}=25

 AC=\sqrt{25}
 AC=5 cm

Deci in cazul de fata ipotenuza triunghiului s-a schimbat. Ipotenuza oricarui triunghi difera de la o problema la alta in functie de datele acesteia.