Exercitii cu radicali Exercitii cu numere reale

Dupa ce am discutat despre numere reale, adica Radacina patrata a unui numar  natural patrat perfect, Modulul unui numar real, Reprezentarea pe axa a numerelor reale, Produsul radicalilor, Catul radicalilor, Introducerea factorilor sub radicali, Scoaterea factorilor de sub radicali, Operatii cu numere reale, Rationalizarea numitorilor unei fractii, Formule de calcul prescurtat si nu in ultimul rand Media geometrica adoua numere reale nenegative astazi o sa ne reaminitm cum se efectueaza aceste exercitii, adica o recapitulare a intregului capitol al Numerelo reale. Astfel prezentam Exercitii cu radicali

 

1. Rezultatul calculului \frac{1}{\sqrt{3}}+\frac{3}{2\sqrt{3}}-\frac{5}{4\sqrt{3}} este …

Ca sa aflam rezultatul acestui calcul mi intai rationalizam numitorii dupa cum am invatat si astfel obtinem:

\frac{\sqrt{3}}{3}+\frac{3\sqrt{3}}{2\cdot 3}-\frac{5\sqrt{3}}{4\cdot 3}=\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{2}-\frac{5\sqrt{3}}{12}=\frac{4\sqrt{3}+6\sqrt{3}-5\sqrt{3}}{12}=\frac{5\sqrt{3}}{12}

2) Calculand \sqrt{27}\left(\frac{4}{\sqrt{3}}-\frac{5\sqrt{3}}{3}\right) se obtine….

Solutie:

3\sqrt{3}\left(\frac{4\sqrt{3}}{3}-\frac{5\sqrt{3}}{3}\right)=3\sqrt{3}\left(\frac{4\sqrt{3}-5\sqrt{3}}{3}\right)=3\sqrt{3}\left(\frac{-sqrt{3}}{3}\right)=\sqrt{3}\cdot\left(-\sqrt{3}\right)=-3

Ca sa rezolvam exercitiul de mai sus, mai intai am scos factorii de sub radicali, iar apoi am rationalizat, am efectuat calculele si astfel am gasit rezultatul final, nu inainte de a simplifica pe unde am putut.

3. Rezultatul calculului \frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{1+\sqrt{2}} este egal cu …
Solutie

Ca sa afla rezultatul calculului mai intai rationalizam numitorii, cu regula care am invatat-o la lectua Rationalizarea numitorilor

a sa afla rezultatul calculului mai intai rationalizam numitorii, cu regula care am invatat-o la lectua Rationalizarea numitorilor

\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{4}\right)^{2}}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1-\sqrt{2}}{1^{2}-\left(\sqrt{2}\right)^{2}}=

\frac{\sqrt{3}-2}{3-4}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{1-\sqrt{2}}{1-2}=\frac{\sqrt{3}-2}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{1-\sqrt{2}}{-1}=1

4. Daca x=\sqrt{\left(2-\sqrt{5}\right)^{2}}+|\sqrt{5}-3|=|2-\sqrt{5}|+|\sqrt{5}-3|=\sqrt{5}-2+3-\sqrt{5}=-2+3=1

Ca sa rezolvam exercitiul de mai sus trebuie sa tinem cont de anumite reguli, adica:

stim \sqrt{a^{2}}=|a|=a,\;\;\;daca\;\;\; a>0 si -a\;\;\;daca \;\;\;a<0 astfel in cazul nostru stim ca \sqrt{5}\approx 2, 236 deci mai mare decat 2 si astfel obtinem:

 

\sqrt{\left(2-\sqrt{5}\right)^{2}}=|2-\sqrt{5}|=-\left(2-\sqrt{5}\right)=-2+\sqrt{5}=\sqrt{5}-2

asemanator facem si pentru |\sqrt{5}-3|.

5. Daca x=\sqrt{\left(1-\sqrt{2}\right)^{2}}, y=\sqrt{\left(\sqrt{2}-3\right)^{2}} si z=2\sqrt{6}\left(\frac{4\sqrt{3}}{\sqrt{2}}-\frac{3\sqrt{2}}{\sqrt{3}}\right), atunci x+y-z este….

Solutie:

Calculam mai intai

x=|1-\sqrt{2}|=-\left(1-\sqrt{2}\right)=\sqrt{2}-1, iar apoi

y=|\sqrt{2}-3|=-\left(\sqrt{2}-3\right)=3-\sqrt{2}, deoarece observam ca \sqrt{2}<3, \sqrt{2}\approx 2,141

iar

z= 2\sqrt{6}\left(\frac{\sqrt{3}\cdot 4\sqrt{3}-\sqrt{2}\cdot 3\sqrt{2}}{\sqrt{6}}\right)=2\sqrt{6}\cdot \frac{4\sqrt{9}-3\sqrt{4}}{\sqrt{6}}=2\sqrt{6}\cdot\frac{4\cdot 3-3\cdot 2}{\sqrt{6}}=2\sqrt{6}\cdot\frac{12-6}{\sqrt{6}}=2\sqrt{6}\cdot\frac{6}{\sqrt{6}}=2\cdot 6=12

Observam ca la exercitiul de mai sus mai intai in paranteza am adus la acelasi numitor comun (puteam sa si rationalizam, de obiecei alegem metoda care ni se pare mai usoara), am efectuat calculele din paranteza , iar apoi am efectuat produsul dintre numarul din fata parantezei si rezultatul din paranteza, nu inainte de a simplifica.

Acum calculam x+y-z=\sqrt{2}-1+3-\sqrt{2}-12=2-12=-10

6. Calculand \frac{2}{\sqrt{5}-\sqrt{3}}+\frac{6}{\sqrt{3}}-\frac{5}{\sqrt{5}}, se obtine…

Solutie

\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{6\sqrt{3}}{3}-\frac{5\sqrt{5}}{5}=    \frac{2\sqrt{5}+2\sqrt{3}}{5-3}+2\sqrt{3}-\sqrt{5}=\frac{2\sqrt{5}+2\sqrt{3}}{2}+2\sqrt{3}-\sqrt{5}=\frac{2\sqrt{5}+2\sqrt{3}+4\sqrt{3}-2\sqrt{5}}{2}=\frac{6\sqrt{3}}{2}=3\sqrt{3}.

Observati  ca acum am rationalizat pare mai usor de calculat si gasim cam greu numitorul comun, iar apoi am efectuat calculele cu numere reale, adica am folosit regulile de calcul cu radicali si astfel am gasit rezultatul.

7. Daca a=\sqrt{\left(\sqrt{3}-3\right)^{2}} si b=\sqrt{\left(2+\sqrt{3}\right)^{2}} atunci media aritmetica a lor este egal cu….

Solutie:

Mai intai calculam a=|\sqrt{3}-3|=-\left(\sqrt{3}-3\right)=3-\sqrt{3}, iar

b=|2+\sqrt{3}|=2+\sqrt{3}, astfel media aritmetica a celor doua numere este:

m_{a}=\frac{a+b}{2}=\frac{3-\sqrt{3}+2+\sqrt{3}}{2}=\frac{3+2}{2}=\frac{5}{2}.

8. Calculand

\left(\frac{\sqrt{5}-\sqrt{2}}{\sqrt{3}}-\frac{\sqrt{3}}{\sqrt{5}+\sqrt{2}}\right)^{12}+\sqrt{\left(1-\sqrt{5}\right)^{2}}-|2-\sqrt{5}| se obtine…

Solutie:

\left(\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{3}-\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\right)^{12}+|1-\sqrt{5}|-\left[-\left(2-\sqrt{5}\right)\right]=

\left(\frac{\sqrt{15}-\sqrt{6}}{3}-\frac{\sqrt{15}-\sqrt{6}}{5-2}\right)^{12}+\sqrt{5}-1-\left(-2+\sqrt{5}\right)=

\left(\frac{\sqrt{15}-\sqrt{6}}{3}-\frac{\sqrt{15}-\sqrt{6}}{3}\right)^{12}+\sqrt{5}-1+2-\sqrt{5}=\left(\frac{\sqrt{15}-\sqrt{6}-\sqrt{15}+\sqrt{6}}{3}\right)^{12}+1

Ca sa rezolvam exercitiul de mai sus  observam ca am rationalizat fractiile, iar apoi am efectuat calculele si astfel am observat ca ni s-au redus toti termenii, iar modulele le-am rezolvat cum am facut mai sus .Astfel am obtinut rezultatul 1.

9. Calculand \sqrt{4-\sqrt{7}}\cdot\sqrt{4+\sqrt{7}}-\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}} se obtine….

Solutie

\sqrt{\left(4-\sqrt{7}\right)\cdot\left(4+\sqrt{7}\right)}

-\sqrt{\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)}=

\sqrt{4^{2}-\sqrt{7}^{2}}-\sqrt{2^{2}-\sqrt{3}^{2}}=    \sqrt{16-7}-\sqrt{4-3}=\sqrt{9}-\sqrt{1}=3-1=2

Ca sa rezolvam exercitiul de mai sus am folosit produsul radicalilor, dar si formulele de calcul prescurtat, adica formula a^{2}-b^{2}=\left(a-b\right)\cdot\left(a+ \right) precum si radacina patrata a unui numar natural.

Deci e important ca la exercitii cu radicali sa invatam toate notiunile care tin de acest capitol.

 

 

 

Numere reale Radacina patrata a unui numar natural patrat perfect

Probabil ca vi s-a mai vorbit  despre radicali dar pana acum nu ati avut foarte multe informatii, dar si despre numere reale.

Astfel, numarul x se numeste patrat perfect daca exista un numar intreg a cu proprietatea ca x=a^{2}.

Numarul |a| se numeste radacina patrata a numarului x si se noteaza \sqrt{x}

Foarte important sa stim ca:

\sqrt{a^{2}}=|a|, iar pentru a\geq 0 avem \sqrt{a^{2}}=a.

Foarte imprtant sa stim ca \sqrt{a^{2}}=a, cand a\geq 0.

Exp:\sqrt{36}=\sqrt{6^{2}}=6 coform regulii de mai sus.

Acum invatam algoritmul de extragere a radicalilor, astfel incepem printr-un exemplu ca sa intelegem mai usor:

\sqrt{784}=28

algoritmul de extragere a radicalilor
Deci cand calculam radicalii foarte important este sa stim cand un numar este patrat perfect sau nu, adica ultimele cifre ale unui numar si astfel calculam mai usor.
Sau mai putem calcula si daca scriem numarul sub produs de factorii primi si folosim faptul ca \sqrt{a^{2}}=a
Deci \sqrt{784}=\sqrt{2^{2}\cdot 2^{2}\cdot 7^{2}}=2\cdot 2\cdot 7=28
algoritmul de extragere a radicalilor

b) \sqrt{20449}+\sqrt{285156}-\sqrt{54289}=
Calculam prima data radicalii, adica folosim algoritmul de extragere a radicalilor:
Care este algoritmul de extragere a radicalilor dintr-un numar dat
Astfel obtinem
\sqrt{20449}+\sqrt{285156}-\sqrt{54289}=143+534-233=677-233=444
Sau putem calcula daca descompunem radicalii in produs de factori primi
c)\sqrt{6\cdot\sqrt{576}}+\sqrt{3\cdot\sqrt{144}}
cum scoatem factorii de sub radical
\sqrt{576}=\sqrt{2^{2}\cdot2^{2}\cdot2^{2}\cdot3^{2}}=2\cdot2\cdot2\cdot3=24  \sqrt{144}=\sqrt{2^{2}\cdot2^{2}\cdot3^{2}}=2\cdot 2\cdot 3=12
Deci
\sqrt{6\cdot\sqrt{576}}+\sqrt{3\cdot\sqrt{144}}=\sqrt{6\cdot 24}+\sqrt{3\cdot12}=\sqrt{144}+\sqrt{36}=12+6=18
Deci foarte important sa intelegem algoritmul de extragere a radicalilor, dar si descompunerea in produs de factori primi intrucat observam ca ne ajuta.

Valoarea absoluta a unui numar rational, modulul unui numar rational, ordonarea numerelor rationale

Astazi o sa invatam despre valoarea absoluta a unui numar rational sau modulul unui numar rational si cum sa ordonam numerele rationale.
Astfel valarea absoluta a unui numar rational (modulul cum il stim) se noteaza astfel |x| si se defineste:
<br /> |x|=<br /> \\x,\;\; daca \;\; x>0<br /> \\0,\;\; daca \;\; x=0<br /> \\-x\;\; daca \;\; x<0<br />
Proprietatile numarului rational
<br /> |x|=0, daca si numai daca x=0
|x|\geq 0, pentru oricare  x\in Q
|x|=|-x|, pentru oricare  x\in Q
|xy|=|x|\cdot |y| , oricare  x, y\in Q

Ordonarea numerelor rationale
Dintre doua numere rationale diferite mai mare, este cel care este situat pe axa numereor la dreapta celuilalt.
a<b
Exp:
Ordonati crescator numerele
<br /> \\a=\frac{12}{5}<br /> \\b=\frac{12}{7}<br />
Reprezentam pe axa numerelor
Ordonarea numerelor rationale in exemple
sau le ordonam cum am invatat in clasa a VI-a daca numerele sunt pozitive, adica ne uitam la numitorul fractiilor daca avem acelasi numarator, iar daca impartim acelasi numarator la numitori diferiti si unul dintre numitori este mai mare si celalalt mai mic, atunci cel mai mare numar este cel care are numitorul mai mic (pentru ca il impartim la un numar mai mic).
Dintre doua numere rationale negative este mai mare cel care are modulul mai mic.
Exercitii
1) Scrieti in ordine crescatoare numerele:
<br /> -2,5; -7,3; 0; -1,5; +3,4; -2,8; +4,5; -5,3; -5,(8); +3,8(3); -8; -3\frac{1}{2}; 2\frac{1}{4}; 4; -\frac{3}{5}; \frac{6}{5}<br />
Ca sa ordonam numerele lucram fractiile:
<br /> \\-3\frac{1}{2}=-\frac{3\cdot 2+1}{2}=-\frac{7}{2}=-3,5<br />
transformat in fractie zecimala
<br /> \\2\frac{1}{4}=\frac{2\cdot 4+1}{4}=\frac{9}{4}=2,25<br /> \\-\frac{3}{5}=-0,6<br /> \\\frac{6}{5}=1,2<br />
am transformat fractiile ordinare in fractii zecimale.
Incepem prin a ordona crescator numerele:
<br /> -8< -7,3< -5,(8)< -5,8< -3\frac{1}{2}< -2,8< -2,5< -1,5< -\frac{3}{5}< 0< \frac{6}{5}< 2\frac{1}{4}< 3,4< 3,8(3)< 4< 4,5<br />
Daca le asezam pe axa numerelor rationale obsevam ca numerele rationale negative mai mari se duc spre ‘minus infinit’, iar cele pozitive se duc spre ‘plus infinit’. Si aplicam si faptul ca dintre doua numere rationale negative mai mare este cel care are valoarea absoluta (modulul) a numarului mai mica.
2) Aratati ca
<br /> \frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+...+\frac{1}{2011\cdot 2012}<1<br />
Incercam sa-l scriem fiecare fractie astfel incat sa ni se reduca anumiti termeni:
<br /> \frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+...+\frac{1}{2011\cdot 2012}=<br /> \\\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}=<br /> \\\frac{1}{1}-\frac{1}{2012}=<br /> \\\frac{2012-1}{2012}=\frac{2011}{2012}<1<br />
fractia \frac{2011}{2012}=0,9.... deci mai mica decat 1
Fractie subunitara.

Exercitii-intervale in R

Astazi o sa efectuam cat mai multe exercitii intervale in R :
1) Se considera multimile:
<br /> \\A=\left\{x\in R|-2\leq x<3\right\}<br /> \\B=\left\{x\in R| -4<x\leq 1\right\}
a) Scrieti multimile A si B sub forma de interval
b) Determinati urmatoarele multimi
<br /> \\ C=\left\{x| x\in A\;\; si \;\;x\in B\right\}<br /> \\D=\left\{x| x\in A\;\; si \;\; x\in N^{*}\right\}<br /> \\E=\left\{x| x\in B\;\; si \;\; x\in Z^{*}\right\}<br /> \\F=\left\{x| x\in A\;\; si \;\; x\in B\right\}
Solutie:
<br /> \\A=[-2; 3)<br /> \\B=(-4;1]<br /> \\C=\left\{ -2; -1; 0; 1;\right\} sau ca interval [-2, 1]
\\D=\left\{1; 2\right\}<br /> \\E=\left\{-3; -2; -1; 1\right\}<br /> \\F=\left\{-2; -1; 0; 1\right\}
2) Calculati:
<br /> A\cup B; A\cap B; A-B; B-A<br /> \\A=\left\{x\in R|-1<\frac{3x+7}{2}\leq 11\right\}<br /> \\B=\left\{x\in R|-2\leq \frac{5x+9}{8}<3\right\}<br />
Solutie
Trebuie sa gasim multimile astfel daca inmultim
<br /> -1<\frac{3x+7}{2}\leq 11 |\cdot 2<br /> cu 2 o sa avem o inegalitate fara numitor, astfel obtinem:
<br /> \\-2<3x+7\leq 22 (-7)<br /> \\-2-7<3x+7-7\leq 22-7<br /> \\-9< 3x\leq 15 |:3<br /> \\-3<x\leq 5<br /> A=\left\{-2; -1; 0; 1; 2; 3; 4; 5\right\}<br />
Sau daca scrise sub forma de interval elementele multimii
<br /> A=(-3; 5]<br />
iar pentru multimea B luam
<br /> -2\leq \frac{5x+9}{8} \\-2\cdot 8\leq 5x+9<3\cdot 8<br /> \\-16\leq 5x+9< 24 (-9)<br /> \\-16-9\leq 5x+9-9<24-9<br /> \\-25\leq 5x \\-5\leq x< 3<br /> \\ B=\left\{-5; -4; -3; -2; -1; 0; 1; 2\right\},
iar daca scriem sub forma de interval obtinem:
<br /> B=[-5; 3)<br />
Calculam acum <br /> \\A\cup B=\left\{-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5\right\}<br /> \\A\cap B=\left\{ -1; 0; 1; 2\right\}<br /> \\A-B=\left\{3; 4; 5\right\}<br /> \\B-A=\left\{-5; -4; -3;\right\}
iar daca scriem sub forma de interval obtinem:
<br /> \\A\cup B=[-5; 5]<br /> \\A\cap B=(-3; 3)<br /> \\A-B=[3; 5]<br /> \\B-A=[-5; -3]<br /> .
Deci trebuie sa rezovam cat mai multe exercitii intervale in R ca sa le intelegem mai bine.

Numere reale, Multimi de numere

Acum ca am trecut de Evaluarea initiala o sa invatam, de fapt o sa aprofundam, notiunea de numere reale.
Stim inca din clasa a VII-a ca N\subset Z\subset Q\subset R. Unde
N= multimea numerelor reale
Z= multimea numerelor intregi
Q= multimea numerelor rationale
R= multimea numerelor reale
Ca sa intelegem fiecare multime si ce elemente contine trebuie sa stim cum definim fiecare multime:
<br /> N=\left\{0; 1; 2; 3; ...; n...\right\}
Obs: N^{*} este multimea numerelor naturale fara zero si o definim ca:
N^{*}=\left\{1; 2; 3; 4; ...n;...\right\}.
Obsrevam ca  N^{*}\subset N.
Multimea numerelor intregi (Z) se defineste astfel:
Z=\left\{...;-n; ...; -2; -1; 0; 1; 2;...;n\right\}
La fel ca si la multimea numerelor naturale definim multimea numerelor intregi fara zero
Z^{*}=\left\{...; -n;...; -2; -1; 1; 2;...; n;...\right\}.
Astfel Z^{*}\subset Z, dar stim si ca  N\subset Z.
Multimea numerelor rationale (Q) se defineste astfel:
Q=\left\{\frac{a}{b}| a\in Z, b\in Z^{*}\right\}
Deoarece daca b=0, atunci fractia nu ar mai avea sens.
La fel cum exista N^{*}, Z^{*} asa exista si  Q^{*}=Q-{0} numita multimea numerelor rationale fara zero.
Multimea numerelor irationale ( R-Q ) este multimea numerelor care se scrie de obicei sub forma de radical.
Multimea numerelor reale(R) este reuniunea multimii numerelor rationale cu multimea numerelor irationale.
Exercitii:
1) Fie multimea  A=\left\{\frac{8}{-4}; \sqrt{0,(4)}; \frac{-15}{-3}; -\sqrt{12}; \sqrt{0,(2)}; \sqrt{4}; 3; \sqrt{5\frac{4}{9}}\right\}
Determinati multimile
 A\cap N; A\cap Z; A\cap Q; A\cap\left(R-Q\right); A-Z; A-Q; A-R
Astfel:
<br /> \\A\cap N=\left\{\frac{-15}{-3}; \sqrt{4}; 3\right\}
\\ A\cap Z=\left\{\frac{8}{-4}; \frac{-15}{-3}; +\sqrt{4}; 3\right\}
\\A\cap Q=\left\{\frac{8}{-4}; \frac{-15}{-3}; +\sqrt{4}; 3; \sqrt{0,(4)}; \sqrt{5\frac{4}{9}}\right\}
\\ A\cap\left(R-Q\right)= \left\{-\sqrt{12}; \sqrt{0,(2)}\right\}
\\A-Z=\left\{-\sqrt{12}; \sqrt{0,(4)}; \sqrt{0,(2)}; \sqrt{5\frac{4}{9}}\right\}
\\A-Q=\left\{\sqrt{12}; \sqrt{0,(2)}\right\}
\\ A-R=\oslash.
Ca sa vedem mai usor fiecare numar in ce multime se afla, incercam ca pe fiecare numar in parte sa-l lucram, adica sa-l aducem la forma cea mai simpla. De exemplu in exercitiul nostru:
\frac{8}{-4}=-2 daca simplificam prin 4
\sqrt{0,(4)}=\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{9}, prima data transformam fractia zecimala periodica simpla in fractie ordianara si apoi folosim regulile de calcul ale radicalilor.
\sqrt{12}=2\sqrt{3}, am scos factorul (2) de sub radical
\sqrt{5\frac{4}{9}}=\sqrt{\frac{49}{9}}=\frac{7}{3}, introducem intregul in fractie, iar apoi extragem radicalul, dupa ce folosim regulile de calcul cu puteri.
Deci ca sa rezolvam acest tip de exercitiu pe langa faptul ca trebuie sa stim fiecare multime, cum o definim, trebuie sa stim si regulile de calcul cu radicali (scoaterea factorilor de sub radical, introducerea factorilor sub radical), introducerea intregilor in fractii, simplificarea unei fractii printr-un numar.