Cateva probleme rezolvate cu ajutorul ecuatiilor

Prezentam cateva probleme rezolvate cu ajutorul ecuatiilor. Pentru cei care nu stiti care sunt etapele pe care trebuie sa le parcurgem in rezolvatea problemelor click aici

Sa se afle 4 nr. consecutive impare, stiind ca, daca la suma lor marita de 8 ori se adauga 280 ,se obtine 2008 .

Solutie:

Consideram numerele naturale  impare: n, n+2, n+4, n+6

Si formam ecuatia: \left(n+n+2+n+4+n+6\right)\cdot 8+280=2008

Iar acum rezolvam ecuatia mai sus formata:

\left(4n+12\right)\cdot 8=2008-280\Rightarrow \left(4n+12\right)\cdot 8=1728\Rightarrow 4n+12=1728:8\Rightarrow 4n+12=216\Rightarrow 4n=216-12\Rightarrow 4n=204\Rightarrow n=204:4\Rightarrow n=51

Deci primul numar impar este 51, cel de-al doilea este n+2=51+2=53

Cel de-al treilea numar este n+4=51+4=55

Iar cel de=al patrulea n+6=51-6=57

Asadar numerele impare consecutive sunt 51; 53; 55; 57

 2. Consideram numerele in baza zece \bar{abc}\;\; \bar{cba}in care stim ca diferenta dintre numarul initial si rasturantul sau este 297, stiind ca b=3, aflati a si c.

Solutie: abc-cba=297,

Rescriind ecuatia  de mai sus obtinem: 100\cdot a+10\cdot b+1\cdot c-\left(c\cdot 100+10\cdot b+1\cdot a\right)=297

Stiind ca b=3 obtinem 100a+10\cdot 3+c-100c-10\cdot 3-a=297\Rightarrow 99a+30-99c-30=297\Rightarrow 99a-99c=297\Rightarrow 99\left(a-c\right)=297\Rightarrow a-c=297:99\Rightarrow a-c=3

Deci diferenta dintre primul numar si ultimul este 3, dar trebuie sa tinem cont si de faptul ca a, c\neq 0, dar si a<c

Pentru a=4, obtinem 4-c=3\Rightarrow 4-3=c\Rightarrow c=1

Asadar obtinem numarul 431

Iar rasturnatul sau este 134

Acum sa vedem daca se verifica 431-134=297

Deci se verifica.

Pentru a=5, obtinem 5-c=3\Rightarrow c=5-3=2

Si numarul gasit este 532 si rasturnatul sau este 235

La fel ca mai sus efectuam scaderea pentru a vedea daca se verifica 532-235=297

Deci se verifica.

Si asa mai departe pentru a=6, 7, 8, 9

 3. Cu 6 ani in urma varsta ficei era egala cu 0,2 din varsta mamei iar peste 9 ani varsta ficei va fi 0,5 din varsta pe care o va avea mama. Cati ani are fiecare in prezent?

Solutie:

Notam cu x varsta fiicei si cu y varsta mamei, astfel formam ecuatiile: x-6=0,2\cdot\left(y-6\right) (Cu 6 ani in urma varsta ficei era egala cu 0,2 din varsta mamei).

x+9=0,5\cdot\left(y+9\right) ( peste 9 ani varsta ficei va fi 0,5 din varsta pe care o va avea mama)

Astfel am obtinut doua ecuatii pe care incercam sa le rezolvam x-6=0,2\left(y-6\right)\Rightarrow x=\frac{2}{10}\left(y-6\right)+6\Rightarrow x=\frac{1}{5}\left(y-6\right)+6

Observati ca in prima ecuatie am scos necunoscuta x in functie de y pentru a putea inlocui in cea de-a doua ecuatie pentru a afla y, dar am transformat dintr-o fractie zecimala in fractie ordinara simplificand pe unde am putut, astfel inlocuind in cea de-a doua ecuatie obtinem: x+9=0,5\left(y+9\right)\Rightarrow \frac{1}{5}\left(y-6\right)+6+9=\frac{5}{10}\left(y+9\right)\Rightarrow \frac{1}{5}\left(y-6\right)+15=\frac{1}{2}\left(y+9\right)\Rightarrow ^{5)}\frac{y+9}{2}-^{2)}\frac{y-6}{5}=15\Rightarrow \frac{5\left(y+9\right)}{10}-\frac{2\left(y-6\right)}{10}=15\Rightarrow\frac{5y+45-2y+12}{10}=15\Rightarrow \frac{3y+57}{10}=15\Rightarrow 3y+57=150\Rightarrow 3y=150-57\Rightarrow 3y=93\Rightarrow y=93:3\Rightarrow y=31

Deci mama are 31 de ani, iar fiica: x=\frac{1}{5}\left(y-6\right)+6\Rightarrow x=\frac{1}{5}\left(31-6\right)+6\Rightarrow x=\frac{1}{5}\cdot 25+6\Rightarrow x=5+6=11

Asadar fiica are 11 ani.

 4. Trei frati au primit impreuna 130 de lei.dupa ce primul a cheltuit doua treimi din partea sa. Al doilea a cheltuit trei sferturi din partea sa, iar al treilea a cheltuit doua cincimi din partea sa. Cei trei frati au ramas cu suma egala de bani. Ce suma de bani exprimata in lei a primit fiecare dintre frati?
Solutie:
 Stim ca impreuna cei trei frati au 130 lei adica
– suma primului frate o notam cu x
-suma celui de-al   doilea frate cu y
– suma celui de-al treilea frate cu z
Astfel formam prima ecuatie:
x+y+z=130
 – x-\frac{2}{3}\cdot x=y-\frac{3}{4}\cdot y=z-\frac{2}{5}\cdot z\Rightarrow \frac{x}{3}=\frac{y}{4}=\frac{3z}{5}
Astfel avem ca:
\frac{1}{3}\cdot x=k\Rightarrow x=3\cdot k
\frac{y}{4}\cdot y=k\Rightarrow y=4\cdot k
Si \frac{3}{5}\cdot z=k\Rightarrow z=\frac{5}{3}\cdot k
Astfel daca inlocuim in prima ecuatie obtinem:
3\cdot k+4\cdot k+\frac{5}{3}\cdot k=130\Rightarrow 7k+\frac{5k}{3}=130\Rightarrow \frac{21k+5k}{3}=130\Rightarrow \frac{26k}{3}=130\Rightarrow k=\frac{130\cdot 3}{26}=\frac{390}{26}\Rightarrow k=15
Astfel primul a avut x=3\cdot k=3\cdot 15=45\;\; lei
Cel de-al doilea y=4\cdot 15=60\;\; lei
Iar cel de-al treilea z=\frac{5}{3}\cdot k=\frac{5}{3}\cdot 15=5\cdot 5=25 \;\; lei