Ne place matematica !

Variante BAC M1

Propunem spre rezolvare un exercitiu de analaiza matematica in care calculam primitiva unei functii, limita unei primitive, dar si o integrala mai complicata, astfel:

Fie functia f:R\rightarrow R f\left(x\right)=\frac{\sin x}{1+cos^{2}x}

a) Calculati \int f\left(x\right) dx

b) Fie F:R\rightarrow R, o primitiva a functiei f, calcuati \lim_{x\to 0}{\frac{F(x)-F(0)}{x^{2}}}

c) Calcuati \int_{0}^{2\pi} x\cdot f(x)dx

Solutie:

a) Variante BAC M1 ! Integrala devine \int f\left(x\right) dx=\int\frac{\sin x}{1+cos^{2}x}dx

Ca sa rezolvam integrala folosim Metoda schimbarii de variabile. Cei care nu va mai reamintiti click aici. Astfel notam \cos x=t

Iar pentru a afla dx, derivam  egalitatea de mai sus in functie de dx dar si in functie de dt \left(\cos x\right)^{'} dx=t^{'} dt\Rightarrow -\sin x dx=dt\Rightarrow \sin x dx=-dt

Astfel integrala devine \int \frac{-dt}{1+t^{2}}=-\frac{1}{1}\arctan\frac{t}{1}=-\arctan\frac{\cos x}{1}+C=-\arctan(\cos x)+C

Mai sus am folosit formula de la integralele uzuale \int \frac{dx}{x^{2}+a^{2}}=\frac{1}{a}\arctan\frac{x}{a}+C

b) Variante BAC M1 ! Stiind ca F este o primitiva a functie f , observam ca cu informatiile de la punctul a)  stim ca F(x)=-\arctan(\cos x)+C si limita devine:

\lim\limits_{x\to 0}{\frac{F{x}-F(0)}{x^{2}}}=

Dar mai intai calculam F(0)=-\arctan(cos 0)=-\arctan 1=0

Astfel limita devine \lim\limits_{x\to 0}{\frac{-\arctan{\cos x}-0}{x^{2}}}=\lim\limits_{x\to 0}{\frac{-\arctan{\cos x}}{x^{2}}}=\frac{0}{0}

Observati ca suntem in cazul de nedeterminare 0/0, astfel cu regula lui L’ Hospital avem ca \lim\limits_{x\to 0}{\frac{\left(-arctan(\cos x)\right)^{'}}{\left(x^{2}\right)^{'}}}=\lim\limits_{x\to 0}{\frac{f(x)}{2x}}=\lim\limits_{x\to 0}{\frac{f^{'}(x)}{2}}=

Mai mai intai calculam f^{'}(x)^=\frac{\cos x\left(1+\cos^{2}x\right)-\sin x\left(-2\cos x\cdot\sin x\right)}{\left(1+\cos^{2} x\right)^{2}}=\frac{cos x+cos^{3} x+2\cos x\sin^{2} x}{\left(1+\cos^{2}x\right)}

Pentru x=0 derivata devine f^{'}(0)=\frac{1+1+0}{\left(1+1\right)^{2}}=\frac{2}{4}=\frac{1}{2}

Adica limita devine: \lim\limits_{x\to 0}{\frac{\frac{1}{2}}{2}}=\frac{1}{4}

c) Variante BAC M1 ! Integrala devine \int^{2\pi}_{0}x\cdot f(x)dx=\int^{2\pi}_{0}x\cdot\frac{\sin x}{1+\cos^{2}x} dx=\int^{2\pi}_{0}=\frac{x\sin x}{1+\cos^{2}x}dx=

Pentru a rezolva integrala facem schimbarea de variabila

t=2\pi-x\Rightarrow -x=t-2\pi\Rightarrow x=2\pi-t

Si obtinem (t)^{'}dt=(2\pi-x)^{'}dx\Rightarrow dt=-dx

Iar capetele intervalului devin x=0\Rightarrow t=2\pi-0=2\pi

Iar pentru x=2\pi\Rightarrow t=2\pi-2\pi=0

Astfel integrala devine \int^{0}_{2\pi}\left(2\pi-t\right)f\left(2\pi-t\right)\left(-dt\right)=\int_{0}^{2\pi}\left(2\pi-t\right)f\left(2\pi-t\right)dt=2\pi\int^{2\pi}_{0}f\left(2\pi-t\right)dt-\int^{2\pi}_{0}t\cdot f\left(2\pi-t\right) dt

Dar stim ca f\left(2\pi-t\right)=\frac{\sin(2\pi-t)}{1+\cos^{2}(2\pi-t)}

Dar stim ca \sin(2\pi -t)=\sin 2\pi\cdot\cos t-\cos 2\pi\sin t=-(-1)\cdot \sin t=-\sin t dar si \cos(2\pi -t)=\cos 2\pi \cos t+\sin 2\pi\sin t=\cos t astfel f(2\pi-t)=\frac{-\sin t}{1+\cos^{2}t}

Si integrala devine 2\pi\int^{2\pi}_{0}\frac{-\sin t}{1+\cos^{2}t}(-dt)-\int^{2\pi}_{0}\frac{t\cdot (-\sin t)}{1+\cos^{2}t} (-dt)

 

Astfel integrala devine: \int_{0}^{2\pi}x\cdot f(x)dx=2\pi\int^{2\pi}_{0}\frac{\sin t}{1+\cos^{2}t}dt-\int^{2\pi}_{0}\frac{t\cdot \sin t}{1+\cos^{2}t} dt
\Rightarrow \int^{2\pi}_{0}x\cdot f(x)dx=\frac{1}{2}\cdot 2\pi\int^{2\pi}_{0}\frac{\sin t}{1+\cos^{2} t}dt=-\pi\arctan(cos t)|^{2\pi}_{0}=

-\pi\left(arctan(cos 2\pi)-arctan(cos 0)\right)=-\pi\left(arctan 1-arctan 1\right)=0