Exercitii rezolvate cu ordinea efectuarii operatiilor

Prezentam un exercitiu rezolvat unde folosim ordinea efectuarii operatiilor si folosirea parantezelor.

\left\{0,2+\left[\left(\frac{3}{2}\right)^{2}\cdot \left(\frac{2}{3}\right)^{3} + \left(-\frac{1}{3}\right) :\left(\frac{2}{3}\right)^{2}\right] :\left(-^{2)}\frac{2}{3}+^{3)}\frac{1}{2}\right)\right\}\cdot\left(\sqrt{-5}\right)^{2}

Ca sa rezolvam exercitiul de mai sus  respectam ordinea efectuarii operatiilor si folosirea parantezelor. Adica mai intai in paranteza dreapta efectuam ridicarea la putere prin folosirea regulilor de calcul cu puteri \left\{\frac{2}{10}^{(2}+\left[\frac{3^{2}}{2^{2}}\cdot\frac{2^{3}}{3^{3}}+\left(-\frac{1}{3}\right):\frac{2^{2}}{3^{2}}\right]:\left(-\frac{2\cdot 2}{6}+\frac{3\cdot 1}{6}\right)\right\}\cdot 5

Ca sa intelegem de ce \left(\sqrt{-5}\right)^{2}=\sqrt{-5}\cdot\sqrt{-5}=+5

Acum efectuam ridicarea la putere si obtinem \left\{\frac{1}{5}+\left[\frac{9}{4}\cdot\frac{8}{27}+\left(-\frac{1}{3}\right):\frac{4}{9}\right]:\left(-\frac{4}{6}+\frac{3}{6}\right)\right\}\cdot 5=    \left\{\frac{1}{5}+\left[\frac{1}{1}\cdot\frac{2}{3}+\left(-\frac{1}{3}\right)\cdot\frac{9}{4}^{(3}\right]:\left(\frac{-4+3}{6}\right)\right\}\cdot 5

Observati ca am mai efectuat anumite simplificari pentru a ne simplifica calculele, acum observam ca ne dispare paranteza rotunda, iar cea dreapta se transforma in rotunda si acolada in dreapta.

\left[\frac{1}{5}+\left(\frac{2}{3}-\frac{3}{4}\right):\left(-\frac{1}{6}\right) \right]\cdot 5=

Acum in prima paranteza aducem la acelasi numitor

Observat ca numitorul comun este 12 si obtinem \left[\frac{1}{5}+\left(\frac{8}{12}-\frac{9}{12}\right)\cdot\left(-\frac{6}{1}\right)\right]\cdot 5

Observati ca mai sus am efectuat si impartirea celor doua paranteze, adica prima fractie inmultita cu inversul celei de-a doua \left[\frac{1}{5}+\left(\frac{8-9}{12}\right)\cdot\left(-\frac{6}{1}\right)\right]\cdot 5=    \left[\frac{1}{5}+\left(-\frac{1}{12}\right)\cdot\left(-\frac{6}{1}^{(6}\right)\right]\cdot 5=    \left[\frac{1}{5}+\left(+\frac{1}{2}\cdot\frac{1}{1}\right)\right]\cdot 5=    \left(^{2)}\frac{1}{5}+^{5)}\frac{1}{2}\right)\cdot 5=    \left(\frac{2\cdot 1}{10}+\frac{5\cdot 1}{10}\right)\cdot 5=\left(\frac{2}{10}+\frac{5}{10}\right)\cdot 5=\frac{2+5}{10}\cdot 5=\frac{7}{10}\cdot 5^{(5}=\frac{7}{2}\cdot 1=\frac{7}{2}

Si astfel am obtinut rezultatul \frac{7}{2}

2. Irina are de rezolvat 16 probleme de matematica . Poate sa rezolve in timp de doua zile repartizand un nr egal de probleme in fiecare zi ? Dar in trei zile ? Dar in patru ? Justificati.

Poate sa rezolve cele 16 probleme in doua zile si in fiecare zi acelasi numar de probleme, deoarece 16:2=8

Daca ar fi sa rezolve cele 16 probleme in 3 zile, nu se poate deoarece 16:3=5 rest 1, adica in 2 zile ar rezolva 5 probleme si in a treia zi ar rezolva 6 probleme.

Iar in patru zile poate sa rezolve problemele, adica in fiecare zi ar rezolva cate 4 probleme.

 

Categories: , , ,