Lucrare scrisa la matematica pe semestrul I
Nume:
Prenume
Subiectul I
0, 5 p 1.a) Dintre numerele $latex a=1,2(31)$ si $latex b=1,2(3)$ mai mare este ……
0, 5 p b) Rezultatul calculului $latex \left(-\frac{1}{3}\right)^{2}-0,(5)-\left(-1\frac{1}{3}\right):3$ este egal cu …
0, 5 p 2. Fie ABC un triunghi si $latex D\in \left(AB\right), E\in\left(AC\right), DE||BC$. Daca $latex \frac{AD}{DB}=\frac{3}{4}$, atunci valoarea raportului $latex \frac{EC}{AC}$ este egal cu …..
3. Rombul ABCD are $latex m\left(\widehat{A}\right)=30^{0}$ si AB=36 cm.
0,5 p a) Distanta de la punctul B la dreapta CD este…
1 p b) Aria rombului este egala cu……
0, 5 p 4. Rezultatul calculului $latex a=|1-\sqrt{3}|-\left(\sqrt{3}-2\right)$
Subiectul II
1. Calculati
1 p a) $latex \left(5\cdot \sqrt{0,02(7)}+\sqrt{4\frac{21}{25}}\right):0,1(4)-\sqrt{3\frac{1}{16}}$
1 p b) $latex \left(2\sqrt{6}+\sqrt{54}\right):\sqrt{6}-\left(8\sqrt{5}-\sqrt{45}\right):\sqrt{5}$
1 p 2. Rezolvati ecuatia $latex \left(3\frac{3}{4}-1\frac{1}{2}\right)\left(x-1\right)=6\frac{3}{4}$
3. Fie ABCD un trapez dreptunghic, $latex m\left(\widehat{A}\right)=m\left(\widehat{D}\right)=90^{0}, AB=8 cm, CD=4 cm, m\left(\widehat{ABC}\right)=45^{0}$, iar M mijlocul lui [AB]
1 p a) Aratati ca triunghiul CMB este dreptunghic isoscel
1 p b) Aratati ca patrulaterul AMCD este patrat
0,5 p c) Calculati aria trapezului ABCD