Probleme rezolvate cu Teorema lui Pitagora

Prezentam, din nou,  alte Probleme rezolvate cu Teorema lui Pitagora

1. In ∆PQR, PM perpendicular pe QR, M € (QR), PQ=20cm, QM=16cm, MR= 9cm. Demonstrati natura triunghiului PQR.

Stim ca PM\perp QR, astfel obtinem ca triunghiul PQM dreptunghic in M, iar daca aplicam Teorema lui Pitagora in triunghiul PQM obtinem: PQ^{2}=PM^{2}+QM^{2}\Rightarrow 20^{2}=PM^{2}+16^{2}\Rightarrow 400=PM^{2}+256\Rightarrow PM^{2}=400-256\Rightarrow PM^{2}=144\Rightarrow PM=\sqrt{144}=12\;\; cm

La fel si triunghiul PMR fiind dreptunghic aplicam Teorema lui Pitagora
PR^{2}=PM^{2}+MR^{2}\Rightarrow PR^{2}=12^{2}+9^{2}\Rightarrow PR^{2}=144+81\Rightarrow PR=\sqrt{225}\Rightarrow PR=15\;\; cm
Iar QR=QM+MR=16+9=25 cm.
reciproca lui Pitagora

Acum daca aplicam reciproca lui Pitagora obtinem: QR^{2}=QP^{2}+PR^{2}

Adica 25^{2}=20^{2}+15^{2}\Rightarrow 625=400+225
Deci triunghiul este dreptunghic in P.
Asadar obtinem figura:
Teorema lui Pitagora

2. a) Lungimea catetei unui triunghi dreptunghic isoscel este a. Aflati lungimea ipotenuzei.

Fie ABC un triunghi dreptunghic isoscel in care AB=AC=a. Astfel cu Teorema lui Pitagora obtinem BC^{2}=AB^{2}+AC^{2}\Rightarrow BC^{2}=a^{2}+a^{2}\Rightarrow BC^{2}=2a^{2}\Rightarrow BC=\sqrt{2a^{2}}\Rightarrow BC=a\sqrt{2}

Deci important sa retinem faptul ca ipotenuza intr-un triunghi dreptunghic isoscel cu catetele de lungime a este egala cu a\sqrt{2}
ipotenuza intr-un triunghi dreptunghic
b) Lungimea laturii unui patrat este de 10 cm. Aflati lungimea diagonalei patratului.
Demonstratie:

Stim ca in patrat toate laturile sunt egale astfel obtinem AB=BC=CD=A=10 cm
Observam ca triunghiul ADC este drepunghic in D si cu AD=DC=10 cm, obtinem ca triunghiul ADC este dreptunghic isoscel si cu cea ce am aratat mai sus obtinem ca AC=10\sqrt{2}, astfel diagonala patratului este egala cu 10\sqrt{2}\;\; cm

Sau cu Teorema lui Pitagora in triunghiul ADC obtinem AC^{2}=AD^{2}+DC^{2}\Rightarrow AC^{2}=10^{2}+10^{2}\Rightarrow AC^{2}=100+100\Rightarrow AC=\sqrt{200}\Rightarrow AC=10\sqrt{2}\;\; cm
cum aflam diagonala intr-un patrat

c) Lungimea ipotenuzei unui triunghi dreptunghic isoscel este de 12 cm. Aflati lungimile catetelor.

Stim cu formula de mai sus ca ipotenuza intr-un triunghi dreptunghic isoscel de latura a este: Ip=a\sqrt{2}\Rightarrow 12=a\sqrt{2}\Rightarrow 12^{2}=\left(a\sqrt{2}\right)^{2}\Rightarrow 144=a^{2}\cdot 2\Rightarrow a^{2}=144:2\Rightarrow a^{2}=72\Rightarrow a=\sqrt{72}\Rightarrow a=6\sqrt{2}

Deci obtinem catetele de lungime 6\sqrt{2}
Sau cu Teorema lui Pitagora obtinem:

Astfel consideram Triunghiul dreptunghic isoscel ABC, cu AB=AC=l, astfel daca plicam Teorema lui Pitagora obtinem: BC^{2}=AB^{2}+AC^{2}\Rightarrow 12^{2}=l^{2}+l^{2}\Rightarrow 2l^{2}=144\Rightarrow l^{2}=144:2\Rightarrow l^{2}=72\Rightarrow l=\sqrt{72}=6\sqrt{2}\;\; cm
cum aflam catetele intr-un triunghi dreptunghic isoscel  daca stim ipotenuza
Asdar este foarte important sa memoram faptul ca ipotenuza intr-un triunghi dreptunghi isoscel de lungime a este egala cu a\sqrt{2}

Rezolvarea triunghiului dreptunghic Probleme rezolvate

In cadrul acestui articol prezentam doua probleme  pe care le rezolvam cu ajutorul Teoremei lui Pitagora, Teoremei inaltimii, dar si cu ajutorul Teoremei catetei. Astfel in cazul primei probleme, avem un triunghi dreptunghic, stim o cateta, dar si raportul dintre lungimea proiectiei si ipotenuza. Si avem sa aflam lungimile proiectiilor, ipotenuza, o cateta, dar si … Citește mai mult