Ecuatia unei drepte care trece prin doua puncte distincte

Prezentam noi probleme care se rezolva cu ajutorul ecuatiilor, dar si cum calculam ecuatia unei drepte care trece prin doua puncte distincte, cat si exercitii simple pentru clasa a IV a. Pe deasupra mai prezentam si exercitii rezolvate cu progresii aritmetice, adica aflarea primilor n termeni ai unei progresii aritmetice.

Prima problema.

Mihai si fratele lui au impreuna 21 de ani. Varsta lui Mihai reprezina patru supra trei din varsta fratelui sau. Cati ani au fiecare?

Solutie:

Notam cu x varsta lui Mihai si y varsta fratelui sau

Astfel obtinem ecuatia:

x+y=21 (Mihai si fratele lui au 21 de ani)

x=\frac{4}{3}\cdot y

Astfel daca inlocuim cea de-a doua ecuatie in prima obtinem:

\frac{4}{3}\cdot y+y=21|\cdot 3\Rightarrow 4y+3y=21\cdot 3\Rightarrow 7y=63\Rightarrow y=63:7\Rightarrow y=9

Deci am obtinut ca fratele sau are varsta de 9 ani

Iar Mihai x=\frac{4}{3}\cdot y=\frac{4}{3}\cdot 9=\frac{4\cdot 9}{3}=\frac{36}{3}=36:3=12

Deci Mihai are 12 ani.

2. Calculati 1320:40+5x(15+17+2×4)-(200+480:160)=

Ca sa rezolvam exercitiul de mai sus trebuie sa tinem cont de ordinea efectuarii operatiilor si folosirea parantezelor, astfel mai intai in parantezele rotunde efectuam operatiile de inmultire si impartire 1320:40+5\cdot\left(15+17+8\right)-\left(200+3\right)=

33+5\cdot 40-203=33+200-203=233-203=30

3. Sa se determine ecuatia dreptei care contine pct. A(2,3) si B(-3,-2)

Ca sa determinam ecuatia dreptei care trece prin punctele A si B, mai intai ne reamintim formula invatata in clasa a X a, adica ecuatia carteziana a dreptei care trece prin doua puncte distincte A\left(x_{A}, y_{A}\right) si B\left(x_{B}, y_{B}\right) este

\frac{x-x_{A}}{x_{B}-x{A}}=\frac{y-y_{A}}{y_{B}-y_{A}}

Iar in cazul nostru obtinem \frac{x-2}{-3-2}=\frac{y-3}{-2-3}\Rightarrow \frac{x-2}{-5}=\frac{y-3}{-5}\Rightarrow x-2=y-3\Rightarrow x-2-y+3=0\Rightarrow x-y+1=0

4. Determinati nr. natural de trei cifre scrise in baza zece care impartite la 38 dau restul 7

Solutie:

Consideram numarul natural de trei cifre scrise in baza zece

abc

Stim ca numerele impartite la 38 dau restul 7.

Astfel cu teorema impartirii cu rest obtinem:

abc:38, obtinem c=catul si r=7

Astfel avem abc=38\cdot c+7, dar tebuie sa tinem cont si de conditia r<I, aica restul mai mic ca impartitorul.

Pentru c=1, obtinem numarul abc=38\cdot 1+7=38+7=45, dar numarul gasit este de trei cifre, iar numerele pe care noi le cautam sunt de trei cifre, astfel numerele noastre sunt cuprinse intre 100<abc<999

Pentru c=3, obtinem numarul:

abc=38\cdot 3+7=114+7=121

Pentru c=4 si obtinem abc=38\cdot 4+7=152+7=159

Pentruc=5 si obtinem abc=38\cdot 5+7=190+7=197

………………………

Pentru c=26, obtinem abc=38\cdot 26+7=988+7=995

5. Rezolvati ecuatia

5x+3x(2-4)=8

Ca sa rezolvam ecuatia de mai sus efectuam calculele din paranteza rotunda: 5x+3x\cdot\left(-2\right)=8\Rightarrow 5x-6x=8\Rightarrow -x=8\Rightarrow x=-8

6. Calculati suma

S = 8+11+14+…+44

Ca sa calculam suma de mai sus, observam mai intai ca sunt termenii consecutivi ai unei progresii aritmetice, astfel mai intai aflam ratia progresiei aritmetice:

8, 11, 14,…, 44

astfel ratia este r=11-8=3

Acum sa aflam cati termeni are suma pentru a o putea calcula, iar pentru asta folosim formula termenului general de la progresiile aritmetice si obtinem:

a_{n}=a_{1}+\left(n-1\right)\cdot r\Rightarrow 44=8+\left(n-1\right)\cdot 3\Rightarrow 44-8=\left(n-1\right)\cdot 3\Rightarrow 36=\left(n-1\right)\cdot 3\Rightarrow 36:3=n-1\Rightarrow 12=n-1\Rightarrow n=12+1\Rightarrow n=13

Deci avem 13 termeni ai sumei si stim ca a_{1}=8, fiind primul termen a_{n}=44 fiind ultimul termen, iar suma termenilor se calculeaza cu formula

S_{n}=\frac{\left(a_{1}+a_{n}\right)\cdot n}{2} (suma primilor n termeni)

In cazul nostru S_{13}=\frac{\left(8+44\right)\cdot 13}{2}=\frac{52\cdot 13}{2}=\frac{26\cdot 13}{1}=338

Deci obtinem ca 8+11+14+...+44=338

Reprezentarea analitica a dreptei in plan Ecuatia carteziana generala a dreptei

Consideram un plan cartezian P, cu un reper cartezian Ox, Oy.
Definitie: O multime d\subset P este o dreapta daca si numai daca exista trei numere reale a, b, c ci a\neq 0 sau b\neq 0, astfel incat:
d=\left\{\left(x,y\right)|ax+by+c=0\right\}

Daca are loc relatia de mai sus spunem ca d este dreapta de ecuatie: ax+by+c=0 si se scrie d:ax+by+c=0

Despre dreapta d:ax+by+c=0 afirma:
– d are aceeasi directie cu Ox (este orizonatala) daca si numai daca a=0
– d are aceeasi directie cu Oy (este verticala) daca si numai daca b=0
– d este oblica daca si numai daca a\neq 0, si b\neq 0
Dreptele d:ax+by+c=0 si d':a'x+b'y+c'=0 coincid, daca si numai daca exista un numar real \lambda\neq 0 astfel incat:
a'=\lambda\cdot a, b'=\lambda\cdot b, c'=\lambda\cdot c

Aplicatie:

1. Aflati valoarea parametrului c\in R pentru care dreapta de ecuatie d:2x-3y+c=0 trece prin punctul A\left(6, 3\right)

Solutie: A\in d\Rightarrow 2\cdot 6-3\cdot 3+c=0\Rightarrow 12-9+c=0\Rightarrow 3+c=0\Rightarrow c=-3

Deci c=-3.

Ecuatii carteziene particulare a dreptei

Fie dreapta d:Ax+By+C=0, unde A\neq 0 sau B\neq 0

Daca B\neq 0, adica b nu are aceeasi directie cu Oy si avem Ax+By+C=0\Leftrightarrow y=-\frac{A}{B}-\frac{C}{A}, de unde notam y=-\frac{A}{B} si n=-\frac{C}{A} si obtinem ecuatia y=mx+n

Dar exista si reciproca, astfel consideram numerele reale m si n date de ecuatia unei drepte care nu are aceeasi directie cu Oy, y=mx+n

astfel y=mx+n\Leftrightarrow mx-y+n=0\Leftrightarrow ax+by+c=0, cu a=m. b=-1, c=n.

Definitie: Vom spune ca y=mx+n este ecuatia carteziana explicita a dreptei in plan.

Daca dreapta d  are ecuatia y=mx+n, atunci:

– numarul m se numeste panta dreptei d sau coeficientul unghiular al dreptei d.

-numarul n se numeste ordonata la origine a dreptei d

Observatie: Numai dreptele care nu sunt verticale pot fi reprezentate printr-o ecuatie explicita.

Teorema. Daca m este panta unei drepte care nu este verticala si care trece prin punctele A\left(x_{A}, y_{B}\right), B\left(x_{B},y_{B}\right), atunci m=\frac{y_{A}-y_{B}}{x_{A}-x_{B}}

Daca m este panta unei drepte d care nu este verticala si \theta este masura unghiului dintre dreapta d si axa Ox, atunci m=\tan\theta

Observatie. In cazul dreptei oblice sau orizontale d:y=mx+n, masura unghiului dintre dreapta d si axa Ox este \theta=\arctan m.

Fie d si d’ doua drepte care nu sunt verticale d: y=mx+n si d^{'}:y=m^{'}x+n^{'}

Folosind semnificatia geometrica a pantei, rezulta:

-d si d’ au aceeasi directie daca si numai daca m=m^{'}

– d si d’ sunt paralele daca si numai daca m=m^{'} si d\neq d^{'}

Ecuatia unei drepte care trece printr-un punct dat:

Fie in plan un punct A\left(x_{A}, y_{A}\right) si o dreapta d care trece prin punctul A.

Daca d este verticala atunci ecuatia dreptei d este d:x=x_{A}

Daca d nu este verticala, atunci scriem ecuatia lui d sub forma explicita si anume y=mx+n, unde m,n\in R. cum stim ca A\in d, avem y_{A}=mx_{A}+n, adica n=y_{A}-mx_{A} si cu ecuatia de mai sus obtinem y=mx+n=mx+y_{A}-mx_{A}\Rightarrow y=mx+y_{A}-mx_{A}\Rightarrow y-y_{A}=mx-mx_{A}\Rightarrow y-y_{A}=m\left(x-x_{A}\right)

Asadar ecuatia unei drepte d care trece prin punctul A\left(x_{A}, y_{A}\right) si are panta m este y-y_{A}=m\left(x-x_{A}\right)

Dar trebuie sa scriem si ecuatia unei drepte care trece prin doua puncte distincte.

Ecuatia unei drepte care trece prin punctele distincte A\left(x_{A}, y_{A}\right) si B\left(x_{B}, y_{B}\right) este:

– AB:x=x_{A}, daca x_{A}=x_{B}

AB:y-y_{A}=m\left(x-x_{A}\right), daca x_{A}\neq x_{B}, unde m=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}

Aplicatie:

Scrieti ecuatia dreptei care trece prin punctele A, B, unde:

a) A\left(-2,4\right), B\left(-2, 1\right)

Avem x_{A}=x_{B}=-2, deci AB||Oy si AB:x=-2

b) A\left(2, 3\right), B\left(-1, 3\right), deci cu notiunile de mai sus obtinem ca y_{A}=y_{B}, deci AB||Ox si AB:y=2

c) A\left(1, 2\right),B\left(3, 5\right)

Constatam ca dreapta AB este oblica, deoarece:

x_{A}\neq x_{B}\Rightarrow 1\neq 3 si y_{A}\neq y_{B}\Rightarrow 2\neq 5

Iar ecuatia dreptei este: y-y_{A}=m\left(x-x_{A}\right)

Iar m=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{5-2}{3-1}=\frac{3}{2}

Iar ecuatia dreptei este: y-2=\frac{3}{2}\left(x-1\right)\Rightarrow 2\left(y-2\right)=3\left(x-1\right)\Rightarrow 2y-4=3x-3\Rightarrow 3x-2y+4-3=0\Rightarrow 3x-2y+1=0

Sau putem sa scriem ecuatia dreptei si cu ajutorul ecuatiei drepte explicite, deci stim ca y=mx+n

Adica AB:y=mx+n, adica coordonatele punctelor A si B trebuie sa verifice aceasta ecuatie, deci

2=m\cdot 1+n\Rightarrow 2=m+n

Dar si 5=m\cdot 3+n\Rightarrow 5=3m+n acum din cele doua relatii gasite trbuie sa aflam m si n.

2=m+n\Rightarrow m=2-n

Acum daca inlucuim in cea de-a doua relatie obtinem 5=3m+n\Rightarrow 5=3\cdot\left(2-n\right)+n\Rightarrow 5=6-3n+n\Rightarrow 5-6=-2n\Rightarrow -1=-2n\Rightarrow n=\frac{1}{2}

Iar acum sa aflam m m=2-\frac{1}{2}\Rightarrow m=\frac{4}{2}-\frac{1}{2}\Rightarrow m=\frac{3}{2}

Deci ecuatia dreptei este y=mx+n\Rightarrow y=\frac{3}{2}\cdot x+\frac{1}{2}\Rightarrow 2y=3x+1\Rightarrow 2y-3x-1=0\Rightarrow -3x+2y-1=0\Rightarrow 3x-2y+1=0