Aplicatii trigonometrice in geometria plana

O  aplicatie a trigonometriei in geometria plana o reprezinta rezolvarea triunghiurilor.

Astfel fie ABC un triunghi. Numerele a=BC, b=AC, c=AB  si A=m\left(\widehat{BAC}\right), B=m\left(\widehat{ABC}\right), C=m\left(\widehat{ACD}\right), care sunt elementele triunghiului.

Triunghiul ABC este bine determinat daca se cunosc elementele sale.

A rezolva un triunghi inseamna a determina elementele triunghiului cunoscand trei dintre acestea.

Astfel avem mai multe cazuri de congruente:

a) Rezolvarea triunghiului dreptunghic cand se cunosc laturile (cazul de congruenta L.L.L)

In acest caz elementele cunoscute sunt a,b, c si elementele necunoscute sunt A, B, C.

Astfel din teorema cosinusului avem ca:

cum aplicam teorema cosinusuluiBC^{2}=AB^{2}+AC^{2}-2\cdot AB\cdot AC\cdot\cos A\Rightarrow a^{2}=

c^{2}+b^{2}-2\cdot c\cdot b\cdot\cos A\Rightarrow

a^{2}-c^{2}-b^{2}=-2\cdot c\cdot b\cdot \cos A\Rightarrow

\cos A=\frac{a^{2}-c^{2}-b^{2}}{-2\cdot c\cdot b}\Rightarrow

\cos A=\frac{\left(-a^{2}+c^{2}+b^{2}\right)}{-2\cdot c\cdot b}

\Rightarrow \cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}

La fel obtinem pentru

\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}

Dar si

cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}, relatii care conduc la aflarea unghiurilor triunghiului cand stim laturile.

b) Rezolvarea triunghiului cand se cunosc doua unghiuri si o latura comuna (cazul de congruenta U.L.U)

In acest caz elementele cunoscute sunt, de exemplu: a, B, C si elementele necunoscute sunt b, c, A.

Teorema sinusului

In acest caz ca sa aflam masura unghiului , stim ca

A+B+C=180^{0}

In cazul de mai sus

A=180^{0}-B-C sau A=\pi-B-C, iar din teorema sinusului obtinem ca:

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

Astfel obtinem ca

b=\frac{a\cdot \sin B}{\sin A}=\frac{a\sin B}{\sin\left(B+C\right)}

c) Rezolvarea triunghiului cand se cunosc doua laturi si unghiul cuprins intre ele (cazul de congruenta L.U.L)

In acest ca putem sa aplicam Teorema cosinusului pentru a afla cea de-a treia latura si Teorema sinusului pentru a afla unghiurile pe care le cunoastem.

Aplicatii:

1) Fie triunghiul  ABC, calculati lungimea laturii [BC], stiind ca m\left(\widehat{A}\right)=60^{0}, AB=4\;\; cm\;\; AC=6\;\; cm

Demonstratie:

aplicatii cu teorema cosinusului

Observati ca suntem in cazul de congruenta  L.U.L. Astfel daca in triunghiul ABC aplicam Teorema cosinusului obtinem :

BC^{2}=AB^{2}+AC^{2}-2\cdot AB\cdot AC\cdot \cos\widehat{A}\Rightarrow

BC^{2}=4^{2}+6^{2}-2\cdot 4\cdot 6\cdot \cos 60^{0}

\Rightarrow BC^{2}=16+36-48\cdot\frac{1}{2}

\Rightarrow BC^{2}=52-24=28\Rightarrow BC=\sqrt{28}\Rightarrow BC=2\sqrt{7}

Fie ABC un triunghi dreptunghic in A si CB=26 cm, \sin B=\frac{12}{13}. Aflati Perimetrul triunghiului ABC

Demonstratie

Stim ca triunghiul ABC este dreptunghic in A, deci putem aplica notiunile trigonometrice invatate in clasele la mici, astfel avem ca:

 

cum aplicam functiile trigonometriceastfel avem ca:

\sin B=\frac{12}{13}\Rightarrow \frac{AC}{BC}=\frac{12}{13}\Rightarrow \frac{AC}{26}=\frac{12}{13}\Rightarrow 13\cdot AC=26\cdot 12\Rightarrow AC=\frac{26\cdot 12}{13}=\frac{2\cdot 12}{1}=24\;\; cm

Acum daca aplicam Teorema lui Pitagora in triunghiul dreptunghic ABC, gasim ca:

AB^{2}=BC^{2}-AC^{2}\Rightarrow AB^{2}=26^{2}-24^{2}\Rightarrow AB^{2}=676-576\Rightarrow AB^{2}=100\Rightarrow AB=\sqrt{100}\Rightarrow AB=10\;\; cm

 

Astfel

P_{\Delta ABC}=AB+AC+BC=10+24+26=34+26=60

3) Rezolvati triunghiul ABC in cazul:

R=4\;\; cm; A=\frac{2\pi}{3}, C=\frac{\pi}{12}

Observati ca in cazul de sus stim doua unghiuri, iar intr-un triunghi suma masurii unghiurilor este de \pi

Astfel avem ca

A+B+C=\pi\Rightarrow \frac{2\pi}{3}+B+\frac{\pi}{12}=\pi\Rightarrow B=\pi-\frac{2\pi}{3}-\frac{\pi}{12}\Rightarrow B=\frac{12\cdot \pi-4\cdot 2\pi-1\cdot \pi}{12}\Rightarrow B=\frac{12\pi-8\pi-\pi}{12}=\frac{3\pi}{12}^{(3}=\frac{\pi}{4}

Deci B=\frac{\pi}{4}

Acum in triunghiul ABC putem aplica Teorema sinusului:

\frac{BC}{\sin A}=\frac{AB}{\sin C}=\frac{AC}{\sin B}=2\cdot R\Rightarrow    \frac{BC}{\sin \frac{2\pi}{3}}=\frac{AB}{\sin \frac{\pi}{12}}=\frac{AC}{\sin\frac{\pi}{4}}=2\cdot 4

Astfel stim ca

\frac{AC}{\sin\frac{\pi}{4}}=2\cdot 4\Rightarrow \frac{AC}{\frac{\sqrt{2}}{2}}=8\Rightarrow AC=\frac{\sqrt{2}}{2}\cdot 8\Rightarrow AC=4\sqrt{2}

Dar acum stim si ca

\frac{AB}{\sin\frac{\pi}{12}}=8\Rightarrow AB=\sin \frac{\pi}{12}\cdot 8(*)

Dar mai intai sa aflam \sin \frac{\pi}{12}=\sin\left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin\frac{\pi}{3}\cdot \cos\frac{\pi}{4}-\sin\frac{\pi}{4}\cdot \cos\frac{\pi}{3}=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\cdot \frac{1}{2}=\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4}

Acum daca inlocuim in (*), obtinem ca:

AB=\frac{\sqrt{6}-\sqrt{2}}{4}\cdot 8=\frac{\sqrt{6}-\sqrt{2}}{1}\cdot 2=2\left(\sqrt{6}-\sqrt{2}\right)

Acum ca sa aflam BC, stim ca

\frac{BC}{sin\frac{2\pi}{3}}=8\Rightarrow BC=\sin\frac{2\pi}{3}\cdot 8=(**)

Dar mai intai calculam

\sin\frac{2\pi}{3}

Observati ca suntem in cadranul II, deci face reducerea la primul cadran si obtinem:

\sin\frac{2\pi}{3}=\sin\left(\pi-\frac{2\pi}{3}\right)=\sin\frac{3\pi-2\pi}{3}=\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}

Deci in (**) obtinem ca:

BC=\sin\frac{2\pi}{3}\cdot 8=\sin\frac{\pi}{3}\cdot 8=\frac{\sqrt{3}}{2}\cdot 8=4\sqrt{3}

 

Teorema sinusului

Categories: , , ,