Probleme rezolvate recapitulare clasa a 8 a Partea 2

Partea a doua

probleme rezolvate pentru clasa a viii a

 

1. b)Cum rezolvam in multimea numerelor reale ecuatia?
\frac{\left(x-2\right)^{2}}{2}+{2)}^x\left(x-1\right)=\frac{3x\left(x-5\right)}{2}+^{2)}12
Mai intai aducem in ambii membrii la acelasi numitor, astfel ecuatia devine:
\frac{\left(x-2\right)^{2}+2x\left(x-1\right)}{2}=\frac{3x\left(x-5\right)+2\cdot 12}{2}
Cum avem acelasi numitor putem egala numaratorii, astel ecuatia devine:
\left(x-2\right)^{2}+2x\left(x-1\right)=3x\left(x-5\right)+24\Rightarrow x^{2}-4x+4+2x^{2}-2x=3x^{2}-15x+24\Rightarrow 3x^{2}-6x+4=3x^{2}-15x+24\Rightarrow 3x^{2}-3x^{2}-6x+15x=24-4\Rightarrow 9x=20\Rightarrow x=\frac{20}{9}
Apoi doar am aplicat formulele de calcul prescurtat si am efectuat calculele, de unde am obtinut solutia ecuatiei x=\frac{20}{9}

3. In cazul acestei probleme avem un triunghi dreptunghic in care stim doar mediana si cosinusul unui unghi, astfel cu teorema medianei stim ca

cum aflam inaltimea intr-un triunghi dreptunghic problema rezolvata cu teorema lui Pitagora

 

AM=\frac{1}{2}\cdot BC\Rightarrow 6\sqrt{3}=\frac{1}{2}\cdot BC\Rightarrow BC=12\sqrt{3}

Cum stim ipotenuza triunghiului dreptunghic putem sa aflam o cateta deoarece:

\cos B=\frac{cateta\;\; alaturata}{ipotenuza}\Rightarrow \frac{1}{2}=\frac{AB}{BC}\Rightarrow \frac{1}{2}=\frac{AB}{12\sqrt{3}}\Rightarrow AB=\frac{12\sqrt{3}}{2}=6\sqrt{3}\;\; cm^{2}

Cum stim o cateta si ipotenuza putem sa aflam cu teorema lui Pitagora cealalta cateta:

AC^{2}=BC^{2}-AB^{2}\Rightarrow AC^{2}=\left(12\sqrt{3}\right)^{2}-\left(6\sqrt{3}\right)^{2}\Rightarrow AC^{2}=144\cot 3-36\cdot 3\Rightarrow AC^{2}=432-108\Rightarrow AB=\sqrt{324}=18\;\; cm

Deci putem afla perimetrul

P_{\Delta ABC}=AB+AC+BC=18\sqrt{3}+18

b) Ca sa aflam aria unui triunghi dreptunghic stim ca

A_{\Delta ABC}=\frac{c_{1}\cdot c_{2}}{2}=\frac{AB\cdot AC}{2}=\frac{18\cdot 6\sqrt{3}}{2}=\frac{9\cdot 6\sqrt{3}}{1}=54\sqrt{3}\;\; cm^{2}

c) Acum ca sa aflam cat la suta din aria triunghiului ADC reprezinta ABD, mai intai afla aria ficarui triunghi, dar mai intai inatimea triunghiului ABC

h=\frac{c_{1}\cdot c_{2}}{ipotenuza}=\frac{AB\cdot AC}{BC}=\frac{18\cdot 6\sqrt{3}}{12\sqrt{3}}=\frac{18\cdot 1}{2}=9

si cu inaltimea triunghiului ABC o stim AD=9, stim ca avem doua triunghiuri dreotunghice deci putem aplica formula

A_{\Delta ABD}=\frac{BD\cdot AD}{2}=\frac{3\sqrt{3}\cdot 9}{2}

Ca sa aflam BD stim ca \cos B=\frac{1}{2}, deci masura unghiului B este de 60 de grade si unghiul C este de 30 de grade.

Stim ca triunghiul ABM este isoscel cu un unghi de 60 de grade deci echilateral, deci si masura unghiului AMB este de 60 e grade

Astel in triunghiul

ADM stim ca m\left(\widehat{D}\right)=90^{0}

Deci obtinem ca

m\left(\widehat{DAM}\right)=30^{0}

deci in triunghiul ADM dreptunghic in D, aplicam teorema 30-60-90

DM=\frac{1}{2}\cdot AM=\frac{1}{2}\cdot 6\sqrt{3}=3\sqrt{3}

Astfel BD=BM-DM=6\sqrt{3}-3\sqrt{3}=3\sqrt{3}

Iar DC=DM+MC=3\sqrt{3}+6\sqrt{3}=9\sqrt{3}\;\; cm

deci acum putem afla aria fiecarui triunghi

A_{\Delta ABD}=\frac{BD\cdot AD}{2}=\frac{3\sqrt{3}\cdot 9}{2}=\frac{27\sqrt{3}}{2}

Dar si

A_{\Delta ADC}=\frac{AD\cdot DC}{2}=\frac{9\cdot 9\sqrt{3}}{2}=\frac{81\sqrt{3}}{2}

Iar acum trebuie sa aflam

p\% A_{\Delta ABD}=A_{\Delta ADC}\Rightarrow p\% \frac{27\sqrt{3}}{2}=\frac{81\sqrt{3}}{2}\Rightarrow p\%27\sqrt{3}=81\sqrt{3}\Rightarrow p\%=\frac{81\sqrt{3}}{27\sqrt{3}}=\frac{3}{1}\Rightarrow p=3\%

Categories: , , , ,