Rezolvari subiecte Evaluarea Nationala 2015

subiecte evaluarea nationala 2015Demonstratie:
a) Stim ca aria unui dreptunghi este A_{dreptunghi}=L\cdot l=AB\cdot AD=150\cdot 100=15000\;\; m^{2}
Dar transformati in hectare obtinem
15 000:10000=1,5 ha
b)Triunghiul MNB isoscel

Stim ca M este mijlocul lui AD astfel avem ca AM=MD=\frac{100}{2}=50 m
Dar mai stim si ca DN=2\cdot NC
Dar stim ca DC=DN+NC\Rightarrow 150 m=2NC+NC\Rightarrow 3NC=150 m\Rightarrow NC=150:3\Rightarrow NC=50\;\; m
Si DN este egal cu DN=150-50=100
Triunghiul DMN este dretunghic in D si cu Teorema lui Pitagoram obtinem
MN^{2}=DM^{2}+DN^{2}\Rightarrow MN^{2}=100^{2}+50^{2}\Rightarrow MN^{2}=10000+2500\Rightarrow MN^{2}=12500\Rightarrow MN=\sqrt{12500}=10\cdot 5\sqrt{5}\Rightarrow MN=50\sqrt{5}
Dar si BN^{2}=BC^{2}+CN^{2}\Rightarrow BN^{2}=10000+2500\Rightarrow BN^{2}=12500\Rightarrow BN=\sqrt{12500}=10\cdot 5\sqrt{5}\Rightarrow BN=50\sqrt{5}
Astfel obtinem ca MN=BN=50\sqrt{5}\;\; m
Deci triunghiul MNB isoscel de baza MB.
c) Masura unghiului MN si NB.
m\left(\widehat{MN,NB}\right)=m\left(\widehat{MNB}\right)=
Stim ca Triunghiul MNB este isoscel de baza BM, astfel in triunghiul ABM aplicam Teorema luin Pitagora:
BM^{2}=AM^{2}+AB^{2}\Rightarrow BM^{2}=50^{2}+150^{2}\Rightarrow BM^{2}=2500+22500\Rightarrow BM^{2}=25000\Rightarrow BM=\sqrt{25000}=5\cdot 10\sqrt{10}=50\sqrt{10}
Astfel stim ca MN=BN=50\sqrt{5} si BM=50\sqrt{10}

si cu Reciproca Teoremai lui Pitagora obtinem BM^{2}=MN^{2}+BN^{2}\Rightarrow 25000=12500+12500
Astfel obtinem ca Triunghiul MNB este dreptunghic isoscel astfel avem ca m\left(\widehat{MNB}\right)=90^{0}

2. Observam ca avem o piramida patrulatera regulata, in care triunghiul VAD este isoscel si VM mediana, inaltime, mediatoare si bisectoare deci cu teorema lui Pitagora VM^{2}=VA^{2}-AM^{2}, unde AM=MD=\frac{AB}{2}=\frac{6}{2}=3\;\; cm
Astfel VM^{2}=\left(3\sqrt{5}\right)^{2}-3^{2}\Rightarrow VM=\sqrt{45-9}\Rightarrow VM=\sqrt{36}=6\;\; dm
b) Pentru a afla cate grame de vopsea sunt necesare calculam aria laterala
A_{l}=\frac{P_{b}\cdot a_{p}}{2}
stim ca
a_{p}=VM=6 cm
Astfel A_{l}=\frac{4\cdot 6\cdot 6}{2}=\frac{24\cdot 6}{2}=\frac{12\cdot 6}{1}=72\;\; dm^{2}
Stim ca pentru 1 dm^{2} se folosec 30 g vopsea, astfel trebuie 72\cdot 30 g=2160g
deci ne trebuie 2160 g
c) \sin\left(\widehat{(VAD),(VMB)}\right)=\frac{\sqrt{3}}{2}
Dupa cum stiti cand avem sa aflam masura unghiului dintre doua plane aflam intersectia celor doua plane, astfel stim ca daca doua plane au un puncte in comun ele au si o drepata in comun, astfel  (VAD)\cap(VBC)={V}
Astfel avem VM\perp AD; VM, AD\subset(VAD)
si construim VN\perp BC; VN, BC\subset(VBC)
Astfel avem sinusul unghiului \sin\left(\widehat{VN,VM}\right)=\sin\widehat{NVM}
Observam ca MN=DC=AB=6 dm
din a) stim si ca VM=6 dm, obtinem si ca VN=6 cm, deci triunghiul MVN este echilateral.
Astfel stim ca A_{\Delta MVN}=\frac{l^{2}\sqrt{3}}{4}=\frac{36\sqrt{3}}{4}=9\sqrt{3}\; dm
Astfel mai stim si ca A_{\Delta}=\frac{MV\cdot NV\cdot \sin\widehat{MVN}}{2}=\frac{6\cdot 6\cdot\sin\widehat{MVN}}{2}=\frac{36\cdot\sin\widehat{MVN}}{2}=18\sin\widehat{MVN}
Astfel egaland ariile stim ca 18\sin\widehat{MVN}=9\sqrt{3}\Rightarrow \sin\widehat{MVN}=\frac{9\sqrt{3}}{18}=\frac{\sqrt{3}}{2}

Categories: , , ,

Lasă un răspuns