Probleme rezolvate cu Teorema lui Pitagora

Prezentam, din nou,  alte Probleme rezolvate cu Teorema lui Pitagora

1. In ∆PQR, PM perpendicular pe QR, M € (QR), PQ=20cm, QM=16cm, MR= 9cm. Demonstrati natura triunghiului PQR.

Stim ca PM\perp QR, astfel obtinem ca triunghiul PQM dreptunghic in M, iar daca aplicam Teorema lui Pitagora in triunghiul PQM obtinem: PQ^{2}=PM^{2}+QM^{2}\Rightarrow 20^{2}=PM^{2}+16^{2}\Rightarrow 400=PM^{2}+256\Rightarrow PM^{2}=400-256\Rightarrow PM^{2}=144\Rightarrow PM=\sqrt{144}=12\;\; cm

La fel si triunghiul PMR fiind dreptunghic aplicam Teorema lui Pitagora
PR^{2}=PM^{2}+MR^{2}\Rightarrow PR^{2}=12^{2}+9^{2}\Rightarrow PR^{2}=144+81\Rightarrow PR=\sqrt{225}\Rightarrow PR=15\;\; cm
Iar QR=QM+MR=16+9=25 cm.
reciproca lui Pitagora

Acum daca aplicam reciproca lui Pitagora obtinem: QR^{2}=QP^{2}+PR^{2}

Adica 25^{2}=20^{2}+15^{2}\Rightarrow 625=400+225
Deci triunghiul este dreptunghic in P.
Asadar obtinem figura:
Teorema lui Pitagora

2. a) Lungimea catetei unui triunghi dreptunghic isoscel este a. Aflati lungimea ipotenuzei.

Fie ABC un triunghi dreptunghic isoscel in care AB=AC=a. Astfel cu Teorema lui Pitagora obtinem BC^{2}=AB^{2}+AC^{2}\Rightarrow BC^{2}=a^{2}+a^{2}\Rightarrow BC^{2}=2a^{2}\Rightarrow BC=\sqrt{2a^{2}}\Rightarrow BC=a\sqrt{2}

Deci important sa retinem faptul ca ipotenuza intr-un triunghi dreptunghic isoscel cu catetele de lungime a este egala cu a\sqrt{2}
ipotenuza intr-un triunghi dreptunghic
b) Lungimea laturii unui patrat este de 10 cm. Aflati lungimea diagonalei patratului.
Demonstratie:

Stim ca in patrat toate laturile sunt egale astfel obtinem AB=BC=CD=A=10 cm
Observam ca triunghiul ADC este drepunghic in D si cu AD=DC=10 cm, obtinem ca triunghiul ADC este dreptunghic isoscel si cu cea ce am aratat mai sus obtinem ca AC=10\sqrt{2}, astfel diagonala patratului este egala cu 10\sqrt{2}\;\; cm

Sau cu Teorema lui Pitagora in triunghiul ADC obtinem AC^{2}=AD^{2}+DC^{2}\Rightarrow AC^{2}=10^{2}+10^{2}\Rightarrow AC^{2}=100+100\Rightarrow AC=\sqrt{200}\Rightarrow AC=10\sqrt{2}\;\; cm
cum aflam diagonala intr-un patrat

c) Lungimea ipotenuzei unui triunghi dreptunghic isoscel este de 12 cm. Aflati lungimile catetelor.

Stim cu formula de mai sus ca ipotenuza intr-un triunghi dreptunghic isoscel de latura a este: Ip=a\sqrt{2}\Rightarrow 12=a\sqrt{2}\Rightarrow 12^{2}=\left(a\sqrt{2}\right)^{2}\Rightarrow 144=a^{2}\cdot 2\Rightarrow a^{2}=144:2\Rightarrow a^{2}=72\Rightarrow a=\sqrt{72}\Rightarrow a=6\sqrt{2}

Deci obtinem catetele de lungime 6\sqrt{2}
Sau cu Teorema lui Pitagora obtinem:

Astfel consideram Triunghiul dreptunghic isoscel ABC, cu AB=AC=l, astfel daca plicam Teorema lui Pitagora obtinem: BC^{2}=AB^{2}+AC^{2}\Rightarrow 12^{2}=l^{2}+l^{2}\Rightarrow 2l^{2}=144\Rightarrow l^{2}=144:2\Rightarrow l^{2}=72\Rightarrow l=\sqrt{72}=6\sqrt{2}\;\; cm
cum aflam catetele intr-un triunghi dreptunghic isoscel  daca stim ipotenuza
Asdar este foarte important sa memoram faptul ca ipotenuza intr-un triunghi dreptunghi isoscel de lungime a este egala cu a\sqrt{2}

Categories: , ,

Lasă un răspuns